
A USER INTERFACE TOOLKIT EXTENSION FOR
COOPERATIVE PROBLEM SOLVING

by

Regina Huntington, B.App.Sc. (Computer Technology)Victoria.

School of Computer and Information Science,
Faculty of Applied Science,

University of South Australia.

A thesis submitted to the Faculty of Applied Science and Technology,
in partial fulfilment of the degree of

Master of Applied Science in Computer and Information Science.

October 1995.

. . 2

. . 2

 . . 4

. . 6

. . 7

. . 8
 . 9
. . 9
10
. 10
10

. 11

. 11

. 12

. 12
13

 . 14
. 14
15

 . 16

 . 17

. 19

21
. 23
. 25
 . 26
. 27
. 28
 Table of Contents

List of Figures v

List of Tables vi

Glossary vii

Abstract viii

Declaration ix

Acknowledgements x

Chapter 1. Introduction 1

1.1 Objectives .

1.2 Methodology .

1.3 Thesis organisation .

Chapter 2. Related Work 6

2.1 Cooperative problem solving .
2.1.1 A new taxonomy .
2.1.2 Visualisation .
2.1.3 Multiple views .
2.1.4 Filtering .
2.1.5 Highlighting .
2.1.6 Summation .
2.1.7 Advising .
2.1.8 Problem structuring .

2.2 Toolkits .
2.2.1 Toolkit extensions .
2.2.2 Why choose InterViews? .
2.2.3 Existing toolkits .

2.3 Frameworks .
2.3.1 Framework example .
2.3.2 Existing frameworks .

2.4 Summary .

Chapter 3. Cooperative Problem Solving Framework 17

3.1 Cooperative software requirements .

3.2 Information presentation requirements .

3.3 Information presentation framework .
3.3.1 Framework components .
3.3.2 Examples of derived components .
3.3.3 Class hierarchy .
3.3.4 Sample configuration .
3.3.5 Cooperative problem solving techniques .
ii

 . 29

30
 . 30
. 31

32
 . 32
. . 32
 . 33

33
34
35
36

37
37

. 38

 . 39

40
 . 40
 . 41
. 44
45
46

. 47
 . 50
 . 52
 . 53
54
56
. 57

57
. 57
58

58
. 59
60

60
. 61

 . 63
3.4 Summary .

Chapter 4. Cooperative Software Application 30

4.1 Small batch robotic welding .
4.1.1 Welding process parameters .
4.1.2 Welding robot setup .

4.2 Relevant work in robotic welding .
4.2.1 Autonomous approaches to setup .
4.2.2 Support approaches to setup .
4.2.3 Cooperative approaches to setup .

4.3 The existing welding environment .
4.3.1 Yasnac ERC robot controller interface .
4.3.2 Welding Data Monitor interface .
4.3.3 A typical scenario - existing environment .

4.4 Requirements for a robotic welding environment
4.4.1 Existing functions .
4.4.2 New functions .

4.5 Summary .

Chapter 5. Design and Implementation 40

5.1 The InterViews toolkit extension .
5.1.1 Framework classes .
5.1.2 Derived classes .
5.1.3 C functions .
5.1.4 Sample linkage of toolkit components .
5.1.5 Facilities of the toolkit extension .

5.2 The prototype cooperative software environment
5.2.1 InterfaceManager subsystem .
5.2.2 RobotManager subsystem .
5.2.3 DataManager subsystem .
5.2.4 Panel functionality .
5.2.5 A typical scenario - the new environment .
5.2.6 Demonstration .

5.3 Evaluation of the framework .
5.3.1 Framework design .
5.3.2 Framework implementation effort .

5.4 Evaluation of the toolkit extension .
5.4.1 Cooperative software techniques .
5.4.2 Toolkit extension application effort .

5.5 Evaluation of the cooperative software environment
5.5.1 Evaluation against requirements .

5.6 Summary .
iii

 . 64
64

. 65
 . 65
. 65
. 65
66

. 67
67
 . 68
68

. 68
69
69
70
. 70
Chapter 6. Future Work and Conclusions 64

6.1 Enhancements .
6.1.1 Object-oriented implementation .
6.1.2 Advanced program debugging .
6.1.3 Knowledge base of cases .
6.1.4 Parameter limit alerting .
6.1.5 Multimedia data presentation .
6.1.6 User–configured information presentation .

6.2 Future Work .
6.2.1 High-level cooperative problem solving techniques
6.2.2 Other testbeds .
6.2.3 Study of problem solving .

6.3 Conclusion .
6.3.1 Cooperative problem solving taxonomy .
6.3.2 Information presentation framework .
6.3.3 Toolkit extension .
6.3.4 Summary .

 Bibliography 72

Appendix A. Framework Class Reference 76

Appendix B. Panel Class Reference 83
iv

v

 List of Figures

Figure 1-1 Typical setup procedure for a complex manufacturing process 3
Figure 2-1 InterViews FileChooser . 13
Figure 3-1 Information presentation framework design. 23
Figure 3-2 Information presentation class hierarchy . 27
Figure 3-3 Composition of a sample information presentation subsystem 28
Figure 4-1 Overview of the robotic welding environment. 34
Figure 4-2 Yasnac ERC robot controller panel . 35
Figure 4-3 Welding Data Monitor (WDM) . 36
Figure 5-1 Sample WDM data format file . 41
Figure 5-2 Sample WDM data file . 42
Figure 5-3 Readout. 42
Figure 5-4 Histogram . 43
Figure 5-5 Alarm . 44
Figure 5-6 Sample code for linking toolkit components 46
Figure 5-7 Overview of Panel within robotic welding environment 48
Figure 5-8 The Panel subsystems. 50
Figure 5-9 Sample glyph hierarchy forInterfaceManager subsystem. 51
Figure 5-10 The Panel cooperative software environment 52
Figure 5-11 Sample object-instance graph forDataManager subsystem 54
Figure B-1 Sample WDM data format file . 85
Figure B-2 Sample WDM data file . 85

vi

 List of Tables

Table 2-1 Taxonomy of CPS techniques . 8
Table 3-1 Summary of requirements for cooperative software 17
Table 3-2 How cooperative software requirements are to be met 20
Table 5-1 Interface comparison: Yasnac ERC vs Panel, by no. of steps 55

 a

e it

d

ve

re-

er

he

t of

ide

s

.

 Glossary

abstract class a class designed to factor out behaviour common to
range of classes; not to produce instances of itself.

class responsibilities actions a class is expected to perform, or knowledg
maintains.

concrete class a class designed to be instantiated so it can be use
directly in an application.

CPS (Cooperative Prob-
lem Solving)

cooperation between a human and a computer to sol
a problem or perform a task using complementary
capabilities.

data stream a series of values arriving over a period of time rep
senting a single measured quantity.

GUI (Graphical User
Interface)

a system of interaction between a computer and its us
based on graphical icons.

framework a reusable design for a subsystem, which specifies t
way a set of components work together.

subsystem a self-contained part of a system that performs a se
related functions.

toolkit a set of related and reusable classes designed to prov
useful, general-purpose functionality.

toolkit extension a relatively small number of related classes derived
from a base toolkit for a more specialised purpose.

ULOC (Un-commented
Lines Of Code)

a method of measuring the implementation effort of a
piece of software.

WDM (Welding Data
Monitor)

a device used to measure and record welding proces
data.

widget a primitive building block of a graphical user interface
vii

or to

tion

the

aviour

blem

lem

ter to

blem

ision

tems.

eces-

esis

iron-

port.

ple-

fines

eract

timely

olkit

to the

nter-

ative
 Abstract

Decision making in complex, reactive systems often requires a human operat

interpret a large quantity of information in real time and react accordingly. Automa

of such tasks is obviously desirable, but full automation is often not achievable in

short term, because the models of both the decision-making process and the beh

of the underlying system are often incomplete. In such situations, cooperative pro

solving may provide a viable alternative to full automation. Cooperative prob

solving in this context refers to the cooperation between a human and a compu

solve a complex, ill-defined problem. Research in the area of cooperative pro

solving has to date concentrated on the provision of high-level support for dec

making through the use of artefacts such as advisory systems or critiquing sys

There is currently an absence of tools to support the low level activities that are n

sary for effective decision making in ill-defined, reactive environments. This th

demonstrates how support can be provided for low-level activities in these env

ments, then describes an efficient mechanism for the implementation of that sup

The proposed support mechanism is an information presentation framework im

mented as an extension to a graphical user interface toolkit. This framework de

five types of toolkit component and the ways in which these components can int

to enable data acquired from a reactive system to be presented to the user in a

and appropriate manner. The application developer combines a number of to

components of each type into an information presentation subsystem according

needs of the application. In order to validate the framework, an extension to the I

Views user interface toolkit was developed and used to build a prototype cooper

environment for robotic welding.
viii

terial

st of

by
 Declaration

I declare that this thesis does not incorporate without acknowledgement any ma

previously submitted for a degree or diploma in any university; and that to the be

my knowledge, it does not contain any materials previously published or written

another person except where due reference is made in the text.

Regina Huntington,

16 July, 1996.
ix

ted to

ch-

ring

ennis

ject

stic

oject

arvis

mas

iag-

t her

ent

tary

ting

eval-

ing

nt.

tance

d its

e nuts

the

the

thday

ero-

nk

the

crit-

an
 Acknowledgements

When I first became interested in undertaking a research degree, I was direc

Jacquie Jarvis (CIS) and Dennis Jarvis (CSIRO Division of Manufacturing Te

nology), as they were involved in a research activity (fault diagnosis in manufactu

systems) which most closely approximated my interests. Jacquie Jarvis and D

Jarvis, together with Doug Seeley (CIS), were responsible for defining the pro

which is the subject of this thesis. The initial intention was to develop a diagno

system for welding using a cooperative problem solving approach and the pr

began with three advisers contributing different areas of expertise - Dennis J

(cooperative problem solving), Jacquie Jarvis (fault diagnosis) and Bruce Tho

(HCI). However, once the project was under way, the focus shifted from welding d

nosis to cooperative problem solving frameworks and Jacquie Jarvis felt tha

involvement was no longer required.

I would like to thank all three of my advisers for their support and encouragem

throughout the project, and for providing such wonderfully different, complemen

viewpoints. I would also like to thank Doug Seeley for facilitating such an interes

and rewarding project.

The viability of this project depended on access to a suitable testbed in order to

uate the framework. I am extremely grateful to the CSIRO Division of Manufactur

Technology for providing me with access to their robotic welding environme

Special thanks must also go to the members of their Welding Group for their assis

during the development of the prototype cooperative software environment an

subsequent evaluation. Other staff members at CSIRO also assisted me with th

and bolts of my research. In particular, I would like to thank Ian Dick for providing

welding monitor and Laurie Care, Peter Lewis, and Richard Frost for battling with

computer systems on which my demonstrations depended. I owe you all many bir

cakes for that. I must also thank Chris Wood, now sadly no longer with us, for h

ically coming to my rescue to install InterViews. I will fondly remember him.

Once mastered, InterViews is a very flexible and powerful tool. I would like to tha

Upi Weston (Flinders University) for his assistance in helping me to understand

intricacies of InterViews. Thanks also to my colleagues for contributing valuable

icism of my thesis, especially Elena Trichina and Gary Gibson.

I am grateful to the School of Computer and Information Science for providing

internal scholarship to help support me through my period of full time study.
x

cour-

rola

nvi-
Special thanks go to Steve Hunter for his support, and to Jack Grozev for his en

agement and warm company at the office. Which reminds me to thank the Moto

Australia Software Centre for providing a pleasant and productive final write-up e

ronment for several months.
xi

Chapter 1. Introduction

and a

soft-

ci-

imal

ign,

lving

rent

keting,

ions

mal

ative

o not

t, user

view

power

ese

based

to the

d the

rator

load,

ember

se a

, or

pecifi-

man

tware.

nitive

port

iques

ent

ight
Chapter 1. Introduction

Cooperative problem solving (CPS) refers to the cooperation between a human

computer to solve ill defined problems; the software used is known as cooperative

ware. An ill defined problem in this context is a problem which cannot be fully spe

fied before an attempt is made to solve it, and for which there is no single, opt

solution to be found [13]. A good example of an ill defined problem is product des

where the designer is required to be an active participant in a complex and evo

problem solving process. This process may involve other people with diffe

perspectives and a range of software systems. For example, there may be mar

engineering, or production roles to be taken into account [4]. Often, multiple solut

will be the norm; traditional decision support systems only provide a single, opti

solution to the user and are therefore of limited use in such situations. Altern

approaches such as genetic algorithms can provide multiple solutions, but they d

involve the user in solution generation [15].

CPS has traditionally been applied to static design tasks, such as kitchen layou

interface design, and manufacturing cell design. However, the author supports the

that a CPS approach is also suitable for reactive decision-making tasks such as

grid management, air traffic control, and intensive care patient monitoring. In th

and other reactive work environments, decisions must be made rapidly and are

on the assimilation of large quantities of information.

The problems faced by decision makers in these reactive environments relate

unpredictability of event arrival, the need to respond before the next event, an

complexity of control procedures. The tasks often require an experienced ope

under normal circumstances and may become too difficult under a heavy work

such as during an emergency. There may be many different procedures to rem

and some procedures may involve gathering information in order to diagno

problem. Although some degree of automation is desirable - for reliability, safety

economy - the processes involved in these reactive environments are often not s

able or predictable enough for full automation in the near term. Consequently, a hu

operator is still necessary and should be supported, rather than replaced by sof

Research into cooperative software has so far concentrated on developing cog

models of problem solving or decision-making, and on providing high-level sup

by means of advising systems, checklists, and other problem structuring techn

[13]. However, there are many lower-level activities that a cooperative environm

could easily perform, particularly in a reactive environment. Such activities m

include: design retrieval, data acquisition, data presentation, and data storage.
1

Chapter 1. Introduction

lkit -

be

reus-

ts are

While

S

-level

he

m to

ition

needs

h are

infor-

a CPS

steps:
1.1 Objectives

The main objectives of this thesis are:

1. to define effective support for low-level activities in reactive environ-

ments;

2. to describe efficient mechanisms for implementors of CPS systems to

support these activities.

The proposed mechanism is the extension of a graphical user interface (GUI) too

InterViews [27] - to support reactive decision-making. The toolkit extension will

based on a framework [14], which is a set of cooperating components that form a

able subsystem design. Frameworks define how the different types of componen

connected and work together, rather than just the behaviour of each component.

toolkits reuse code, frameworks reuse designs.

A typical GUI toolkit already provides much of the required functionality of a CP

software environment; the framework proposed in this thesis addresses a low

activity which is not already provided by a GUI toolkit: information presentation. T

framework’s design defines five types of component and the links between the

support the flow and processing of incoming data, from external data acquis

devices to the screen. These components have only generic functionality which

to be specialised by the developer to suit a particular application domain.

The toolkit extension implements the information presentation components whic

then used in the same way as the existing interface components. Together, the

mation presentation components and the interface components should provide

toolkit that is no more difficult to use than the original GUI toolkit.

1.2 Methodology

This thesis is attempting to:

1. identify low-level activities that need to be supported in CPS systems

for reactive environments;

2. devise a generic framework whichdirectly supports the implementation

of these activities in CPS systems.

The first task is addressed by a literature review. The second task involves two

1. designing the framework and implementing the toolkit extension;

2. evaluating the usefulness of the framework, by using the toolkit exten-

sion to develop a prototype CPS system for a real world application.
2

Chapter 1. Introduction

eval-

blem

ause:

re of

hese

have

h as

s) is
Robotic welding setup was chosen as the real world reactive domain required to

uate the toolkit extension, because it is an ill defined task [18] that requires the pro

solving skills and domain expertise of a human operator. Setup is ill defined bec

• each new job being set up will be slightly different to previous jobs due

to variations in initial conditions (such as work piece position or metal

surface finish); this requires a change in welding input parameters;

• the relationships between process inputs and process outputs are not

well understood, or only understood empirically by practitioners;

• setup usually requires an experienced operator to interpret and act on a

large amount of - often incomplete - information in real time in order to

make suitable parameter modifications.

The operator is required to setup the robot using an interactive, iterative procedu

programming and welding that consumes materials, robot time, and person time. T

factors contribute to the expense of setting up small-batch manufacturing jobs and

primarily restricted the use of robotic welding to mass production applications, suc

vehicle assembly.

The setup stage of robotic welding (and many other manufacturing processe

described in Figure 1-1.

Figure 1-1 Typical setup procedure for a complex manufacturing process

Note that there are two distinct planning phases in the above setup procedure:

1. a planning phase, in which initial process parameters are selected and

tried;

select initial parameters

repeat

modify parameters

perform trial production run

until results are OK

go into production

if results are not OK

endif

perform trial production run
1

2

3

Chapter 1. Introduction

an

h is

set of

s and

elding

ff-line,

en no

n, a

envi-

The

olkit

ated

d the

ving,

eter-

ntages

ed,

pter

arte-

ding.

soft-

ork is

iron-
2. a replanning phase, in which process parameters are modified because

the results of the trial production run were not satisfactory.

This results in two very different planning problems and makes robotic welding

interesting evaluation domain. The first problem relates to off-line planning, whic

essentially a static design problem, with the design artefact being a proposed

welding parameters. The second problem involves monitoring process condition

adjusting process parameters in order to converge on a successful set of w

parameters. To date, computer assistance for setup has addressed the first, o

planning phase, typically using a knowledge based approach [1]. There has be

indication in the literature of significant work addressing the second phase.

The artefacts of this research include a framework for information presentatio

toolkit extension that implements the framework, and a prototype CPS software

ronment that applies the extension to a specific domain, i.e. robotic welding.

purpose of the prototype software environment is to evaluate how well the to

extensions support the low-level activities required in a reactive domain. Rel

issues that were deemed to be beyond the scope of this thesis include:

• what are the human factors issues of a CPS system;

• what is the ideal CPS software environment for robotic welding;

• how can the expertise required for robotic welding be reduced;

• to what extent can robotic welding setup be automated.

1.3 Thesis organisation

The first part of this thesis proposes the information presentation framework an

second part evaluates the framework in a reactive environment.

In the first part, Chapter 2 examines the background of cooperative problem sol

toolkits, and frameworks. Existing strategies in CPS are classified in order to d

mine which techniques need to be supported in reactive domains. Then the adva

of frameworks, toolkits (including InterViews), and toolkit extensions are explain

followed by a discussion of some existing toolkit extensions and frameworks. Cha

3 describes the requirements of cooperative environments and defines the main

fact: the information presentation framework.

In the second part, Chapter 4 outlines the requirements of support for robotic wel

Chapter 5 describes the implementation of the toolkit extension and the prototype

ware environment based on the framework design. The success of the framew

evaluated as a way of applying cooperative software to a reactive decision env
4

Chapter 1. Introduction

e the
ment. Finally, Chapter 6 discusses future work and enhancements to conclud

thesis.
5

Chapter 2. Related Work

s and

ibes the

d 2.3

d to

iscus-

oft-

ntary

ership

thesis,

es of

ld be

puter.

goals,

ernal

visu-

ficant

era-

ming

ftware

nd act

t the

amic

task,

on of

For

the

ted in

s can
Chapter 2. Related Work

This chapter outlines the research problem of supporting reactive decision task

investigates why some researchers advocate a CPS approach. Section 2.1 descr

principles and benefits of CPS and discusses related work. Sections 2.2 an

describe software toolkits and frameworks, the mechanisms that will be use

support CPS. Some examples of these mechanisms are provided, along with a d

sion of the reasons for choosing InterViews as the base GUI toolkit.

2.1 Cooperative problem solving

Cooperative problem solving is defined by Rettig [36] as a strategy in which “the s

ware and the person using it are partners in the task at hand, bringing compleme

strengths and weaknesses to bear.” In practical terms, the nature of this partn

depends on both the application area and the user’s expertise in that area. In this

the user is assumed to have experience in monitoring and controlling a seri

domain-specific events. The objective of the cooperative software developer shou

to identify the likely strengths and weaknesses of both the human and the com

Fisher [13] suggests that human strengths include using common sense, defining

and decomposing problems into sub-problems; the computer provides ext

memory, ensures consistency, hides irrelevant information, and summarises and

alises information.

The author supports the view that cooperative software techniques can offer signi

productivity, reliability, or safety improvements in reactive decision tasks. Coop

tive software can provide many levels of assistance to a human operator perfor

these tasks. Essentially, by taking over routine aspects of the task, cooperative so

can reduce the operator’s cognitive load - the demand on the brain to process a

on information. For example, a cooperative software environment may promp

operator through the appropriate procedures for the current situation using a dyn

checklist. This allows the operator to concentrate on the ill-structured aspects of a

those for which humans are better suited than machines.

A software approach to reactive decision tasks is especially useful when the opti

improving existing hardware or equipment is not practical in the short term.

example, welding robots could be improved by replacing the existing interface to

controller with a graphical touch screen, but such equipment cannot be incorpora

a closed, proprietary system. In this case, improvements to the operator’s tool

only be provided through software on a separate computer.
6

Chapter 2. Related Work

on the

iron-

ation,

thesis

ecific

r algo-

ses.

puter

work-

ited

ated

d.

ify his

ng the

ge of

soft-

ine a

2-1,
2.1.1 A new taxonomy

This section defines a new taxonomy of cooperative software techniques, based

work of a number of different researchers who are applying CPS to reactive env

ments. Some researchers focus on the problems related to a particular applic

while others are concerned with more general cooperative support issues. This

is concerned with generic support for reactive systems, so the work on domain-sp

support is less relevant. Domain-specific approaches tend to employ rule bases o

rithms, usually with little consideration of the operator’s strengths or weaknes

Alternatively, the generic approaches tend to consider how the human and com

can best cooperate.

Rencken [34] refers to all forms of support asadaptive aidingand has classified a wide

range of techniques according to the general strategy of reducing an operator’s

load:

• transformation of the nature of the task;

• partitioning of different tasks to either human or computer;

• allocation of the same tasks to both human and computer.

Rencken’s approach is to use allocation, in which the software is able to make a lim

set of decisions similar to those made by the human. Activities are then alloc

dynamically to the decision maker - human or computer - with the least workloa

Rencken classifies CPS approaches as partitioning. He therefore does not class

own work as CPS, because allocation refers to the human and computer performi

same activities independently of each other. Instead, this thesis classifies a ran

techniques in the literature according to the level of assistance provided by the

ware. This new taxonomy of cooperative techniques makes it possible to def

generic framework for low-level support. These classifications, shown in Table
7

Chapter 2. Related Work

(i.e.

main

rally

well

oper-

estions

thors

l or

ns.

.

-

r-

ay
are listed in order from low-level (i.e. passive) assistance towards high-level

active) assistance.

As the form of assistance becomes more high-level, it tends to require more do

knowledge to be encoded in the software. Although cooperative software gene

leaves the expertise to the human, it may be possible to identify and encode

defined aspects of the domain knowledge to reduce the overall workload of the

ator. Even with advisory systems, there remains an emphasis on presenting sugg

in a way that assists operators and still gives them the final say.

The following sections describe examples of each type of technique; some au

describe work that fits more than one category.

2.1.2 Visualisation

Work in visualisation is generally concerned with operator interfaces to industria

environmental tasks that are characterised by a potential for unexpected situatio

Table 2-1 Taxonomy of CPS techniques

Technique Proponents Description

Visualisation Crawford [11]
Bennett [2]

Qualitative or quantitative information is repre-
sented graphically, which may include the use
of three dimensional graphics or animation.

Multiple
Views

Crawford [11]
Kempf [23]
Jarvis [22]
Wybo [48]

User is presented with different views of a situa-
tion, for example: view may vary in the point of
focus, degree of detail or degree of abstraction

Filtering Wybo [48]
Villanueva [45]
Schwuttke [41]

Incoming data is restricted according to some
criteria such as capacity, urgency or user needs
either dynamic or static filtering.

Highlighting Nann [30] Emphasis is placed on the most important info
mation without suppressing the rest, for exam-
ple: using visual or aural alarms.

Summation Schwuttke [41] Information is sorted or arranged in such a w
that it provides a pertinent summary of high-
level events.

Advising Nann [30]
Harbour [17]
Spelt [43]

Complete or partial solutions are presented to
the user for assessment.

Problem
Structuring

Fisher [13]
Clarke [10]

Domain knowledge is used to impose structure
on the problem, for example: presenting
prompts and tools to the user as appropriate to
the current stage of the task.
8

Chapter 2. Related Work

eri-

The

ter

ed.

or

re-

atic

eters

mma-

s to

iews

s to

of a

iews

exam-

ontrol

onsist

levant

nually

lving

rele-

ting

its

al time
Crawford [11] proposes the Intelligent Graphical Interface Project which will exp

ment with various quantitative visualisation techniques for operator interfaces.

project will employ expertise from human factors, artificial intelligence, and compu

graphics to determine the safest and most effective techniques.

Bennett’s work in optimising data visualisation techniques [2] is more fully develop

His approach,Representation Aiding, is designed to get information to the operat

more effectively using mimicry and abstraction. For example, mimicry might rep

sent the flow-rate of liquid in a pipeline as moving bands of colour on a schem

diagram of the pipe. Abstraction involves representing low-level physical param

as higher-level functional quantities. This approach also contains elements of su

tion, as described below. Bennett’s aim is to determine the most effective way

present information in complex, dynamic environments.

2.1.3 Multiple views

In work using multiple views, either the system or the operator determines which v

of the current situation are the most appropriate.

The Intelligent Graphical Interface Project described by Crawford [11] propose

investigate the use of multiple levels of data abstraction and different views

system. Kempf [23] proposes a universal support environment with hierarchical v

that provide increasing structural detail about the subject system. These are both

ples of the operator controlling the view.

Jarvis [22] and Wybo [48] suggest that the system should have some degree of c

over the viewpoint. Jarvis proposes that manufacturing support systems should c

of a range of tools and should take a workbench approach, presenting the most re

view and the most appropriate tools to the users. However, users can proceed ma

if they so desire. Wybo proposes the use of intelligent agents to monitor an evo

situation and keep the user informed. In this system, a dynamically changingscene

combines different graphical formats, such as maps or schematics, into a single

vant view of the situation.

2.1.4 Filtering

Approaches to filtering - i.e. restricting certain types of data - range from restric

data at all times, to restricting it only when too much is arriving.

Wybo [48] proposes using intelligent agents to filter incoming data according to

relevance to the situation. The system combines a reactive database and a re

information manager to monitor the data.
9

Chapter 2. Related Work

port

ines

er of

data

using

.

out a

blem.

lure,

e list

ver-

en

s that

mpar-

rs can

igh-

ated

ural

r vari-

vari-

deci-

ions if

direct
Villanueva [45] proposes combining a real-time expert system with a decision sup

system to remove less important information using compression techniques.

Schwuttke [41] describes an interface that usesDynamic Trade-off Evaluationto

perform intelligent filtering under heavily loaded situations. The system determ

the most important incoming data and restricts it, either by reducing the numb

monitored channels, reducing the data sampling rate, or both. The remaining

channels are then rearranged dynamically and presented to the operator

domain-specific rules. This approach is similar to summation.

2.1.5 Highlighting

Highlighting is concerned with drawing the user’s attention to critical information

Nann [30] proposes a system which highlights the most important information ab

detected failure, allowing the operator to assess and direct further study of the pro

Highlighting is implemented as a list of scenarios that can explain the current fai

with an associated confidence level to indicate the likelihood of each scenario. Th

is then ordered by the system from the highest to the lowest confidence level.

2.1.6 Summation

Summation can take many forms, but generally involves producing a meaningful o

view of the raw data.

In Schwuttke’s Dynamic Trade-off Evaluation [41], if restrictions are imposed, th

the system dynamically rearranges the visual grouping of the remaining channel

are presented. The data is presented textually in a compact format that allows co

ison between different groups of parameters, for example: anomalous paramete

all be grouped together into an error log summary. This approach is similar to h

lighting.

Bennett’s Representation Aiding [2] uses a form of summation by combining rel

streams of information into a single geometric representation called a Config

Display. For example, a rectangle can be used to represent a combination of fou

ables which must remain within a larger rectangle representing the limits of those

ables. This allows an operator to more easily monitor all variables at once.

2.1.7 Advising

The following advisory systems give suggestions, but all systems leave the final

sions to the operator.

Nann’s advisory system [30] pre-processes the incoming data and devises solut

possible, but also presents information that allows the operator to assess and

further study of the situation.
10

Chapter 2. Related Work

rator

ad to

ger to

larms

rning

alarm

tasks;

iron-

ace, a

as a

the

tures

era-

design

itself;

e and

le

often

tance

[26].

ons

olkit

bars,

s into

ter-

et of

ple, a
Harbour [17] proposes a system that can monitor future task conditions and ope

variables, then advise operations managers if these conditions are likely to le

human error. This system can also suggest alternatives and allow the mana

choose a course of action.

Spelt [43] describes an advisory system that assists the operator in diagnosing a

in complex systems. Spelt uses a hybrid architecture consisting of a self-lea

neural net and an expert system which can be trained to detect patterns leading to

conditions, then explain the cause of the alarm to the operator.

2.1.8 Problem structuring

No problem-structuring approaches have been used in dynamic replanning

however, two examples of support for design tasks have been reported.

Fisher [13] has devised a general architecture for domain-oriented design env

ments such as designing a user interface. These environments provide a work sp

palette of components for building the solution, domain-oriented checklists to act

prompt, and an incremental specification editor to help define the problem along

way.

Clarke and Smyth [10] have developed ideas for a cooperative system which struc

a problem differently from Fisher, based on principles of human-to-human coop

tion. Rather than leading the user through a task, the system works on the same

task in parallel with the user. The system is not intended to produce good designs

instead, it has been shown to prompt users’ imaginations and help them defin

express their goals in a clear and structured way.

2.2 Toolkits

According to Gammaet al [14], a software toolkit is “a set of related and reusab

classes designed to provide useful, general-purpose functionality.” Toolkits are

object–oriented, because object-oriented methodologies, particularly the inheri

mechanism, have been shown to be well suited for the development of toolkits

Toolkits enable programmers to avoid “reinventing the wheel” by providing soluti

to common programming problems. For example, a graphical user interface to

defines widgets - the building blocks of a user interface - such as buttons, scroll

windows, and menus. The application programmer can compose the classe

systems or derive more specialised classes from them.

A GUI toolkit may also use a Widget Level Theory [40] to encourage consistent in

faces. A Widget Level Theory refers to a model for both the appearance of a s

widgets and how they should be applied for best user performance. For exam
11

Chapter 2. Related Work

sed

ence

the

et.

ite of

fy a

olkit

g an

per

ncap-

lkit.

hat

eral

sing

m the

tion

d a

ent

iews

the

ng a

ction
model might specify layout appropriateness in terms of placing frequently u

widgets together and using a left-to-right sequence in keeping with the task sequ

description. The result is that the “look and feel” of an application is derived from

widget set. One existing Widget Level Theory is built into the Motif [12] widget s

Consistent interfaces built from a widget set can help users learn and use a su

applications more easily, while the interfaces remain flexible enough to satis

variety of individual preferences.

2.2.1 Toolkit extensions

A toolkit extension is a relatively small number of related classes derived from a to

for a particular purpose which can be reused by other programmers. Extendin

existing toolkit is easier than building a complete, new toolkit and allows a develo

to take advantage of relevant features of the base toolkit. Toolkit extensions can e

sulate behaviour that addresses a more specific application than the original too

2.2.2 Why choose InterViews?

InterViews version 3.1 [27] is a graphical user interface toolkit written in C++ t

encapsulates the X Windows System [39] graphical toolkit. InterViews has sev

advantages as a base toolkit for CPS.

InterViews is object–oriented, so it allows extensions to be easily constructed u

inheritance. InterViews also emphasises the separation of the user interface fro

application code, which makes it possible to modify the interface or the applica

independently.

Like most GUI toolkits, InterViews contains many predefined components an

variety of composition mechanisms, so it offers a convenient way to implem

complex user interfaces - or to implement simple ones quickly. This makes InterV

suitable for developing proof-of-concept prototypes. One such component is

FileChooser (Figure 2-1), which is a widget that facilitates browsing and managi

file system. Another useful component is the IOHandler, which features the dete

of data arriving at ports and the control of timing loops.
12

Chapter 2. Related Work

ed on

t to

, so

ically

hier-

phs

e they

n.

Inter-

ple: a

tion

ines

r

PS.

for a
Figure 2-1 InterViews FileChooser

One of the more useful base classes available in InterViews is theGlyph, which is a

visible representation of data. Glyphs are composed using a geometry model bas

the TeX [24] boxes and glue model. In this model, both the glyphs (equivalen

boxes) and the “glue” (invisible layout glyphs) that bind them together are flexible

an entire composition - the glyph hierarchy - can be stretched and shrunk dynam

to accommodate window resizing and data updating. Updating the top glyph of a

archy automatically draws all glyphs from which the top glyph is composed. Gly

are a firm base from which to develop cooperative interface components becaus

provide simple but powerful mechanisms for display, composition, and extensio

2.2.3 Existing toolkits

To date, there have been no toolkit approaches to CPS reported in the literature.

Views has been used to build research prototypes in other domains, for exam

diagram editor [7], a document editor [8], and a groupware toolkit [37].

Commercial software libraries are available that can perform some informa

processing aspects of CPS. At least one library, ILOGRules[20], addresses real time

data processing. However, the data collected by aRulesapplication is intended to be

used for inference rather than data presentation. Another ILOG product,Views[21], is

a graphical interface library suitable for operational data monitoring which def

data display widgets with external event handling capabilities.Rulesis a rule base that

generates C++ code, whileViews is a library rather than a toolkit; both products offe

fixed functionality, so neither product is suitable for explicit extension to support C

However, both products would be a useful source of specialised components

cooperative software environment.
13

Chapter 2. Related Work

One

oolkit

iated

n recog-

inci-

ake

archi-

h is

hich

ality

an be

ntrol-

lica-

been

rede-

work

tions.

about

s of

t into

asses

out

f the

asses

retary.

t. A
InterViews is extensively used within the computer science research community.

comprehensive example of an extension is Roseman’s real-time groupware t

[37]. The requirements for a useful groupware application, along with the assoc

software techniques, have been encapsulated in the extension classes. Rosema

nises the benefits to the resulting application of basing it on coherent and well pr

pled components.

2.3 Frameworks

Gammaet al define a software framework as “a set of cooperating classes that m

up a reusable design for a specific class of software. The framework dictates the

tecture of an application.” A framework can form the design of a subsystem, whic

a self-contained part of a system that performs a set of related functions.

The key benefit to a programmer is that the framework predetermines the way in w

components will work together, i.e. the links between them, not just the function

of the individual components. The link between one class and its associate c

defined as a member function of the class, or as a member function of a third, co

ling class.

A framework allows a programmer to concentrate on the specific needs of an app

tion, since the design decisions common to the application domain have already

made. A disadvantage to this scheme is the loss of flexibility in cases where the p

termined design does not suit a particular application. However, a good frame

should be flexible and extensible enough to cover a large subset of similar applica

As stated previously, whereas toolkits are about reusing code, frameworks are

reusing designs.

2.3.1 Framework example

An example of a framework is described by Pree [33]. Pree likens different type

component in a framework to specially shaped plugs. Each plug is designed to fi

the matching interface “shape” on another plug. Any components that are subcl

of these plugs will inherit the plug’s shape and be able to fit into the interface with

trouble. The example application is a basic electronic mailing framework. Three o

classes defined in the framework are Mailer, Employee, and DesktopItem. Subcl

of Employee represent specific types of employees, such as Manager and Sec

Subclasses of DesktopItem may include TextDocument and DrawingDocumen

member function such as TransferItem is defined in the Mailer class as:

TransferItem(DesktopItem* item,

Employee* sender,

Employee* receiver)
14

Chapter 2. Related Work

the

d to

It will

ment,

nts a

with

een

of its

of the

ters of

will

recog-

ts that

fined

But

t are

and

a, it

struc-

and

s are

n by
This member function mails the given item of type DesktopItem from the sender to

receiver, both of which are of type Employee. This member function will not nee

be changed in order to deal with subclasses of either DesktopItem or Employee.

work with all current subclasses of these two classes, such as DrawingDocu

Secretary, and Manager, as well as all future subclasses. The Mailer impleme

generic mailing system that does not deal with specific types of component, but

the abstractions Employee and DesktopItem.

This example illustrates the mechanism of defining the “plug” interface betw

classes of a framework. Once a member function is defined for a base class, any

future subclasses can use this inherited function’s interface to pass messages

same type. In addition, if any base classes are defined to be passed as parame

this member function, they are considered part of the interface. So the function

also work with future subclasses of the parameter classes, because the interface

nises their “shape”.

2.3.2 Existing frameworks

Fisher describes a generic architecture for domain-oriented design environmen

employs a problem structuring approach to CPS. Design can be a complex, ill-de

decision task, in which a “good enough” solution to a problem is being sought.

design differs from dynamic replanning, since it deals with assessment criteria tha

difficult to quantify. Therefore there is less emphasis on measuring situation data

more emphasis on satisfying rules.

The architecture consists of five main components:

• aconstruction kitfor direct manipulation of the design, including a pal-

ette of items;

• anargumentative hypertext systemcontaining issues, answers, and ar-

guments about the design domain;

• acatalogue of pre-stored designs;

• aspecification componentwhich allows a specification to be described

in incremental stages by the user;

• asimulation componentthat does “what-if” analyses.

While this architecture is not an object-oriented framework as defined by Gamm

does describe a reusable design for cooperative software environments. Problem

turing is implemented in the construction kit by specifying sub-tasks and checklists

by prompting users through the design process. Other cooperative technique

implied in the architecture. For example, the construction kit uses visualisatio
15

Chapter 2. Related Work

chen.

rom

ltiple

work

ning,

S in a

study

ves

ore

can

mple-

ilar

ppli-

es a
presenting an appropriate depiction of the design, such as the plan view of a kit

The specification component uses the partial specification to filter information f

the hypertext argumentation component. The simulation component presents mu

views of the artefact being designed.

Fisher focuses on problem structuring in the design task. In contrast, the

described in this thesis focuses on information presentation in dynamic replan

particularly the flow and processing of the information.

2.4 Summary

This chapter has discussed CPS and the mechanisms proposed to support CP

reactive environment. A new taxonomy of CPS techniques is defined based on a

of existing CPS work in reactive environments. An object-oriented toolkit sol

common problems for application developers; a toolkit extension can solve m

specific problems while retaining the features of the base toolkit. A framework

provide a reusable design for application developers of cooperative systems. By i

menting the framework as a toolkit extension, a common solution for many sim

application domains is available to developers that should improve the quality of a

cations while reducing the effort of development. The following chapter describ

framework that supports CPS.
16

Chapter 3. Cooperative Problem Solving Framework

sable

some

ted in

Inter-

d in

ion,

class

tion

the

e well

e set

on, by

ts are

uld

eing

driven

ce of

ontrol

There
Chapter 3. Cooperative Problem Solving Framework

This chapter describes the main artefact of the thesis: a framework that is a reu

design for the information presentation aspect of CPS. Section 3.1 begins with

requirements of a cooperative software environment based on the work presen

section 2.1. Then section 3.2 explains which requirements can be met by the

Views toolkit and which requirements demand a toolkit extension. This is followe

section 3.3 by the functional requirements for the object-oriented toolkit extens

then the design of toolkit classes that will meet these requirements. These

designs, together with the member functions for combining them into an informa

presentation subsystem, constitute the framework.

3.1 Cooperative software requirements

The aim of a cooperative software environment is to make optimum use of both

operator’s and the computer’s capabilities. The developer needs to separate th

defined activities of a dynamic task from those that require human expertise. Th

of requirements summarised in Table 3-1 is intended to encourage this separati

each addressing a well defined aspect of a typical dynamic task. The requiremen

generally complementary, and some requirements overlap with others.

A Graphical interface is important for ease of learning and use. The operator sho

be presented with all controls appropriate to the current task, rather than b

expected to remember and type commands. To achieve this, a graphical, pointer

interface is much more suitable than a textual display. In addition, the appearan

each control element should remind the operator of its purpose. For example: a c

element may be a scroll bar used for navigating through the pages of a document.

Table 3-1 Summary of requirements for cooperative software

Requirements Benefits

graphical interface ease of learning and use

data retrieval and presentation decision making support

information highlighting draws attention to important information

information storage later review or reference

integration of tools ease and consistency of use

abstracted functionality focus on task, not tools

cases repository access to past solutions

extensibility most appropriate tools
17

Chapter 3. Cooperative Problem Solving Framework

ance,

ended

ch as

r reac-

ith

ting

itable

- is

nment

ent it

have

esen-

eedle

fective

nd

rma-

tion

ual

ost

ning

xpert

fter

ould

Data

view

lude

along

ward

not

, the

ftware

coop-

ment
are many well documented design strategies for graphical interfaces. For inst

menus should be shallow rather than deep (no more than three levels are recomm

[40], p110) and should be supplemented by shortcuts for experienced users, su

buttons or type-ahead hot keys ([40], p119). Ease of use translates to faster use

tion, while ease of learning is helpful for domain experts who may not be familiar w

computers. A keyboard may still be necessary for information input. The poin

device may be a mouse or a trackball, although a touch screen is often more su

for factory floor conditions.

Data retrieval and presentation- such as equipment status or the results of trials

required as a basis for analysis and decisions. The cooperative software enviro

should obtain data from machines and acquisition devices, process it, and pres

during operation. The operator should have flexible retrieval and presentation and

information from different sources accessible in one place. Some examples of pr

tation devices include bar histograms, three dimensional contour graphs, n

gauges, and flow meters. The use of animation to represent change can be an ef

way to communicate status information [2].

Information highlighting draws the operator’s attention to important information a

frees them from having to monitor easily defined conditions in the presented info

tion. The operator’s expertise can then be focused more effectively on informa

processing that is less well defined. Highlighting may involve audio alarms, vis

colour highlighting, or other means of drawing the operator’s attention to the m

important information as it arrives. There may be a variety of strategies for determi

what is the most important information, such as predefined user-specified rules, e

systems, or adaptive filters.

Information storage enables the operator to review incoming data immediately a

the event or activity that generated it. The cooperative software environment sh

store incoming data in either raw or processed form and provide a replay function.

often arrives quickly or arrives when the operator is busy, so an immediate re

process can supplement direct observation. Ideally the replay function would inc

variable speed settings for slowing down or speeding up the presentation of data,

with other enhancements that follow the video player metaphor, such as fast for

and rewind.

Integration of tools is another requirement for ease of use. The operator should

have to deal separately with external software tools to perform the task. Instead

cooperative software environment should integrate access to all the necessary so

and hardware tools within one consistent interface. This requirement makes the

erative software environment analogous to an integrated development environ
18

Chapter 3. Cooperative Problem Solving Framework

t the

ow

ent.

e

ional

. To

level

rings

. An

o to

lying

of

seful

ristics

search

the

ether

new

d be

ined

g the

ating

iron-

any

d its
such as Borland C++ [6], which provides an editor and a set of tools that suppor

interactive procedure of writing, compiling, and debugging C++ code. The wind

manager of a graphical operating environment makes integration easier to implem

Abstracted functionality refers to a functional rather than physical view of th

system’s controls, i.e. the operator should be presented with high-level funct

controls that relate to the problem solving task rather than the underlying tools

achieve this, the cooperative software environment should perform as much low-

processing as possible, while hiding the details from the operator. The operator b

domain expertise to bear and uses the high-level controls to solve the problem

example of abstracted functionality is to define a button or a keystroke macr

perform a function such as “replay last session” that requires several under

commands.

A Repository of casesprovides a source of experience for the operator in the form

previous problems matched with successful solutions. Previous solutions are a u

starting point for problem solving. Cases should be categorised by the characte

of the problem they addressed. A case repository may be as simple as a keyword

of data files.

Extensibility enables the addition of both software and hardware components to

application. The operator should be presented with the most appropriate tools, wh

to cover a variety of application domains, a range of equipment types, or to add

tools when they become available. Any equipment control subsystem shoul

weakly coupled with the rest of the system, i.e. connected by a narrow, well def

interface, so it can be easily replaced to suit other types of equipment. Extendin

cooperative software environment to more than one hardware platform or oper

system is also desirable and can be readily achieved within a cross-platform env

ment such as X Windows [39].

3.2 Information presentation requirements

The advantage of extending a GUI toolkit to support cooperative software is that m

of the requirements in Table 3-1 can already be met by the existing toolkit an

underlying window manager and operating system. For example:

• the graphical widgets of a GUI toolkit provide basic components for

building easy-to-use interfaces;

• the operating system can perform basic data storage;
19

Chapter 3. Cooperative Problem Solving Framework

nd its

enta-

tion

nt in

pon.

ces of
• equipment control and tool access can be integrated by means of the

window manager and by making all user controls available within one

interface;

• abstracted functionality is assisted by InterViews, which provides high-

level control widgets that hide the underlying commands, but will still

depend on the way the application program is developed;

• a repository of cases can be provided either by basic operating system

commands (e.g. data files and a keyword search) or by a stand-alone

database that can be invoked as a system command within the interface.

• X Windows toolkits are all extensible and GUI toolkits in general are

extensible, since they must be extensible to be useful; extensibility also

depends on a good overall design;

Table 3-2 indicates which requirements are already satisfied by the base toolkit a

environment. The only requirements that demand a toolkit extension are the pres

tion and highlighting of situation data in real time. The target cooperative applica

must be able to handle a potentially complex, dynamic, multimedia environme

which many different information sources need to be assimilated and acted u

Overall, the cooperative application needs to coherently integrate disparate sour

information relating to a complex task.

Table 3-2 How cooperative software requirements are to be met

Requirements Met by

graphical interface InterViews

data retrieval and presentation InterViews extension

information highlighting InterViews extension

information storage operating system

integration of tools operating system,
window manager,
InterViews

abstracted functionality InterViews,
cooperative application

cases repository operating system

extensibility InterViews,
good design
20

Chapter 3. Cooperative Problem Solving Framework

rnal

l and

cqui-

rces,

, the

abil-

ams

alues

tion

bove

ich

ork

akes
The InterViews toolkit already provides classes for detecting the arrival of exte

data and for displaying static data and binary indicators. However, data retrieva

presentation involves other activities, such as: communicating with an external a

sition device, reading and interpreting the data, combining data from different sou

processing it, then displaying it dynamically in an appropriate format. Therefore

InterViews toolkit must be extended to provide these information presentation cap

ities.

The following list of requirements defines the flow and processing of multiple stre

of data, from the external sources to the screen. A data stream is a series of v

arriving over a period of time representing a single measured quantity. An informa

presentation subsystem should be able to:

• retrieve data from multiple communication ports;

• retrieve multiple streams of data through each communication port;

• apply a filter to a data stream;

• apply a calculation process to a data stream;

• combine streams using a calculation process;

• apply a limit alarm to a data stream;

• display a data stream in real time, i.e. with no noticeable delay to the

operator;

• display a single data stream in more than one format simultaneously;

• provide different display techniques;

• store data, either in raw or processed form, as it is retrieved;

• replay stored data to the display devices;

• allow the user to start, stop, and replay a data presentation session;

• allow the user to choose processing and display techniques.

The next section describes the design of several component types that fulfill the a

requirements for handling data.

3.3 Information presentation framework

The following framework is a reusable design for information presentation wh

supports the activities involved in transforming data into information. The framew

is designed to be implemented as an object–oriented toolkit extension, which m
21

Chapter 3. Cooperative Problem Solving Framework

ns the

lkit.

are

the

ation

each

inked

lay-
possible the inheritance and specialisation of components. The framework contai

following components:

• DataHandler (abstract class, derived from IOHandler) links data

streams to DisplayHandlers and optional Filters; retrieves and inter-

prets data streams from a data acquisition device via a port; applies any

given Filters then passes each data stream to the linked DisplayHan-

dler(s);

• Filter (abstract class) removes data values from a data stream that

match the given removal specification;

• DisplayHandler(concrete class) links data streams to Displayers and

optional Processors; applies any linked Processors to incoming data

streams and passes the result to linked Displayer(s);

• Processor(abstract class) performs a calculation on a data stream and/

or merges two streams;

• Displayer(abstract class, derived from MonoGlyph) displays the val-

ues in a data stream dynamically.

This framework was designed to be implemented by any object–oriented GUI too

The only assumption it makes about the toolkit is that primitive graphical widgets

available as building blocks for creating display components. Figure 3-1 shows

relationship between each component of the framework using a relational not

adapted from Rumbaugh [38]. The relational links indicate how many objects of

type can be linked to its associate. For example, a DisplayHandler object can be l

to many Displayers, but each Displayer object receives data from only one Disp

Handler.
22

Chapter 3. Cooperative Problem Solving Framework

some

hey

The

sends

f the

viour

es the

ed by

an

s that

d to

ree’s

eric

d by
Figure 3-1 Information presentation framework design

The information presentation components (classes) have been designed to allow

flexibility in the retrieval, manipulation, storage, and display of feedback data. T

can be combined in various configurations to suit particular application needs.

communication between components is one-way. For example, the DataHandler

a message containing the next data value to the DisplayHandler by means o

DisplayHandler’supdate member function.

3.3.1 Framework components

All core framework components except the DisplayHandler areabstract classes.

Wirfs-Brock [47] defines an abstract class as one designed to factor out beha

common to a variety of classes, not to produce instances of itself. This encapsulat

class’s behaviour for easy maintenance and allows the behaviour to be reus

means of inheritance. Aconcrete classis a class designed to be instantiated, so it c

be used directly in an application. Abstract classes often define member function

only implement default code (if any) and a function interface; these functions nee

be specialised within subclasses to suit a particular application. As described in P

example framework in section 2.3.1, a member function is a way of defining a gen

interface, or “plug shape” between the components of a framework that is inherite

all subclasses of these components.

Data
Handler

Display

Displayer

Filter

Processor

Handler

Key

= one to many (mandatory)

= zero to many (optional)

= association by message passing

= class
23

Chapter 3. Cooperative Problem Solving Framework

viour

ed as

bout the

ecause

tions.

andler

le

r main-

list

ich

work

edge

re no

quisi-

d to
DisplayHandler is defined in the framework as a concrete class because its beha

(handling Displayers) does not depend upon the application. DataHandler is defin

an abstract class because its descendants need to encapsulate specific details a

data acquisition device. Filter, Processor, and Displayer classes are abstract b

their descendant classes need to perform specific information presentation func

The framework components transfer data streams by message passing: DataH

invokes the DisplayHandler’supdate member function when new data is availab

and has been filtered; DisplayHandler invokes the Displayer’supdate member func-

tion whenever new data is available and has been processed. Each DataHandle

tains a list of DisplayHandlers and Filters, while each DisplayHandler maintains a

of Processors and Displayers.

In the following description, IOHandler and MonoGlyph are InterViews classes wh

form base classes for DataHandler and Displayer respectively. The core frame

components are described more fully in Appendix A. The termclass responsibilitiesis

defined by Wirfs-Brock to mean actions the class is expected to perform, or knowl

it maintains.

DataHandler (abstract class, derived from IOHandler)links data streams to

DisplayHandlers or to storage files and handles the data from a port. There a

DataHandler methods defined for requesting and interpreting data from a data ac

tion device, so specialised subclasses with this functionality must be define

communicate with specific devices.

DataHandler’s inherited responsibilities are to:

• accept notification of data ready on its port;

• accept notification of timer expiry, and to reset the timer.

DataHandler’s specialised responsibilities are to:

• know the name of the port to which it is attached;

• link one or two named data streams to a Filter (optional) and to DataH-

andlers;

• start retrieving data from the data acquisition device through the port

and pass it to linked Filters and DisplayHandlers;

• if specified, save retrieved data streams to a logfile;

• stop retrieving data;

• start replaying logged data the same way as live data streams;

• stop replaying logged data.
24

Chapter 3. Cooperative Problem Solving Framework

ilter

sient

ks

s can be

andler

ges

om it.

ed in

endix
Filter (abstract class)removes unwanted values from a data stream. Concrete F

subclasses need to be derived from it, for example, a clipping filter to remove tran

values occurring above or below a realistic limit. Filter’s responsibility is to:

• accept a data value and return either the value or a substitute value ac-

cording to a filter specification.

DisplayHandler (concrete class)channels a data stream to Display devices. Lin

can be created between data streams, Processors, and Displayers. Data stream

merged using Processors and can be sent to multiple Displayers. One DisplayH

is needed for each data stream. DisplayHandler’s responsibilities are to:

• link a named data stream from a DataHandler to Processors (optional)

and Displayers;

• update any linked Processors and Displayers with either one or two data

streams.

Processor (abstract class)performs some calculation on a data stream and /or mer

two streams. Concrete Processors such as a multiplier need to be derived fr

Processor’s responsibility is to:

• accept either one or two data values and perform a calculation on it/

them, then return the result.

Displayer (abstract class, derived from MonoGlyph)displays the values in a data

stream.

Displayer’s inherited responsibility is to:

• draw itself on the screen.

Displayer’s specialised responsibilities are to:

• update itself with a given value;

• clear itself.

3.3.2 Examples of derived components

This section outlines six examples of derived (non-core) components, as illustrat

Figure 3-2. These components are described in more detail in Chapter 5 and App

B.

• WeldMonHandler(concrete class, derived from DataHandler) links

data streams to DisplayHandlers or to storage files and handles the data

from a welding monitor;
25

Chapter 3. Cooperative Problem Solving Framework

work

es (in

) are

s of

he

m the
• ClippingFilter (concrete class, derived from Filter) removes values that

fall below the filter threshold from a data stream;

• Multiplier (concrete class, derived from Processor) multiplies each val-

ue from one data stream with the corresponding value in another

stream, thereby merging the data streams;

• Readout(concrete class, derived from Displayer) displays a data stream

in the form of a numeric gauge to a given number of decimal places;

• Histogram (concrete class, derived from Displayer) displays a data

stream as a dynamic, vertical bar histogram;

• Alarm (concrete class, derived from Displayer) lights up a visual indi-

cator whenever a data value exceeds the specified alarm limit.

3.3.3 Class hierarchy

Figure 3-2 shows the relationship between the InterViews classes, the core frame

classes and the example subclasses derived from them. The InterViews class

italics) are IOHandler and MonoGlyph. The core framework classes (in bold type

DataHandler, DisplayHandler, Displayer, Filter, and Processor. The example

subclasses are WeldMonHandler, Histogram, ClippingFilter, and Multiplier. T

question marks indicate that further specific classes may need to be derived fro

core classes according to the application’s requirements.
26

Chapter 3. Cooperative Problem Solving Framework

ulti-

ed by

four

ed in
Figure 3-2 Information presentation class hierarchy

3.3.4 Sample configuration

Figure 3-3 shows a sample configuration of the above components in which m

plexed data streams from a single port are extracted and may then be merg

processing with other streams. An initial five data streams are combined into

resultant data streams (represented by four DisplayHandlers) that are display

seven Displayers of various types.

...

Data
Handler

Displayer

Processor

Filter

WeldMon
Handler

Clipping
Filter

Histogram

Multiplier

Handler

?

... ?

... ?

... ?

Display

ReadoutAlarm

IOHandler

MonoGlyph
27

Chapter 3. Cooperative Problem Solving Framework

soft-

era-

he

nts

ty or

erent

meter,

able

rent

m to

ing

stric-

ition
Figure 3-3 Composition of a sample information presentation subsystem

3.3.5 Cooperative problem solving techniques

This section explains how the framework helps the development of a cooperative

ware environment. This includes a description of how each of four different coop

tive techniques are encapsulated in the framework.

Visualisation is potentially a more direct way of communicating information to t

operator, provided no important information is lost. The Displayer compone

convert a stream of numbers into a visual representation of a physical quanti

quality. Displayers also enable different representation methods to be used for diff

purposes. For example, a histogram shows previous trends in the values of a para

while a needle gauge shows the parameter’s current position within the allow

range of values. The ability of the DisplayHandler to send a data stream to diffe

Displayers simultaneously enhances this visualisation, by allowing a single strea

be displayed in several forms at the same time.

Filtering removes unwanted forms of data. A Filter derivative can apply a filter

function to any incoming raw data stream to remove transient data - where such re

tions can be well defined in advance. For example, noise in the form of data acquis

sensor
data

Data
Handlers

Display
Handlers Displayers

highpass

v_disphdlr

c_disphdlr

p_disphdlr

current

voltage

voltage

current

power

wdm_hdlr

multiplier

8.3 234 115

11.6 362 113

11.5 362 113

11.8 364 115

12.2 366 113

12.4 366 113
28

Chapter 3. Cooperative Problem Solving Framework

vidual

is a

reted.

ects

erge

ms can

while

wed

rams

enefit

ing.

be

light

uring

or less

ment,

for-

et by

ch-

effec-

is a

mpo-

ition

herent

ion

ain in
interference can obscure the desired data set, so a clipping filter can screen indi

values which vary too much from the surrounding values. The benefit for users

removal of extraneous data, which reduces the total amount of data to be interp

Summationaims to provide a useful overview of raw data. There are several asp

of summation, as discussed in section 2.1.1. The ability of Processor objects to m

data streams provides a combinational aspect of summation. Related data strea

be merged then displayed as a single entity - reducing the amount of data

increasing the amount of information. In addition, different parameters can be vie

simultaneously for direct comparison, for example, the x-axes of several histog

can be aligned to provide a temporal comparison between the parameters. The b

to users is an overall reduction in cognitive load, similar to that provided by filter

Highlighting draws the user’s attention to important information. An Alarm can

associated with any data stream (which may be a combination of data streams) to

up when a value is out of range. Alarm highlights excessive parameter values d

welding, such as high temperature, so the operator can concentrate on watching f

obvious fault conditions.

3.4 Summary

This chapter has defined a set of requirements for a cooperative software environ

many of which can already be met by InterViews, an OS or a window manager. In

mation presentation and highlighting are the only requirements that need to be m

a framework. The aim of the framework is not to explore novel visualisation te

niques, so it does not define any new display devices. Nor does it define the most

tive display and interaction techniques for a cooperative system. Instead, it

reusable design for an information presentation subsystem. The framework co

nents can be linked in particular ways to pipe data streams from data acquis

devices to the screen. The framework assists developers by defining a simple, co

set of building blocks that can be assembled flexibly into a variety of informat

presentation subsystems. The following chapter describes the application dom

which the framework is to be validated - robotic welding setup.
29

Chapter 4. Cooperative Software Application

e the

for-

alth

ring

n-

the

ent.

cation

ns 4.3

a CPS

the

orma-

. The

Elec-

by a

ing

ener-

the

that

small

This

The
Chapter 4. Cooperative Software Application

This chapter discusses robotic welding as a suitable domain in which to validat

information presentation framework defined in Chapter 3. The primary source of in

mation relating to robotic welding has been the Welding Group, Commonwe

Scientific and Industrial Research Organisation (CSIRO), Division of Manufactu

Technology (DMT), Adelaide. CSIRO DMT also provided the evaluation enviro

ment.

The framework is to be validated by extending the InterViews toolkit, then using

toolkit and the extension to build a prototype cooperative software environm

Section 4.1 explains why robotic welding setup was chosen as the testbed appli

and section 4.2 examines other work that addresses robotic welding setup. Sectio

and 4.4 describe the existing setup environment and outline the requirements for

software environment.

4.1 Small batch robotic welding

Setting up a robot to perform welding is an ill defined decision task that illustrates

problems faced by operators of complex, reactive systems. Setup is also an inf

tion-rich domain that comprehensively tests the cooperative software framework

evaluation subject was based on a Motoman K6S robot (developed by Yaskawa

tric Corporation). The robot arm has six degrees of freedom and is controlled

Yasnac ERC robot controller [49]. The Yasnac ERC is typical of most robotic weld

controllers currently being used in manufacturing and can be described as a first g

ation robot. Welding jobs are performed by executing a procedural program on

controller. The main problem with controllers of the Yasnac ERC generation is

setup for small batches is very resource-expensive relative to the returns of a

number of products, hence small batches are often not economically feasible.

section explains why setup is resource-expensive.

4.1.1 Welding process parameters

The welding process is controlled by adjusting variable inputs to affect outputs.

three types of input parameter are:

1. primary manipulable- directly adjustable, for example: arc current, arc

gap size, torch speed;

2. secondary manipulable- indirectly adjustable by employing empiri-

cally known relationships, for example: arc voltage, heat input;
30

Chapter 4. Cooperative Software Application

ngth,

ships

ually

pecific

mal

ation

e weld

justed

lding

eason-

. For

th and

ina-

e to

meter

own

g is

ion -

obots

o they

plex

lding
3. fixed- parameters which cannot be adjusted during program tuning, for

example: material, joint type, and joint gap width.

Output parameters, which include joint hardness, brittleness, and tensile stre

combine to characterise the quality of the welded joint.

There are many input parameters and some are closely coupled, so relation

between inputs and outputs can be non–linear and complex. Initial selection is us

guided by reference to published data such as material codes and standards. S

procedural information is also available from a Welding Procedure, which is a for

record of the parameters that produced a desired result for a given joint configur

[31]. Welding Procedures document the steps necessary to achieve repeatabl

quality.

In addition, primary welding parameters such as torch speed need to be ad

in-process to avoid fault conditions and maintain consistency under variable we

conditions. Whereas other manufacturing tasks (such as assembly of parts) are r

ably deterministic, welding parameters change dynamically and unpredictably

example, the base metal expands as it heats, causing the joint gap to change wid

require more or less filler metal to compensate. A human welder will use a comb

tion of hand, eye, ear, and touch coordination along with empirical experienc

monitor and control the welding process dynamically.

4.1.2 Welding robot setup

In order to set up a robot for welding, an operator is required to:

• write a program in the robot’s procedural language that specifies the

initial welding parameters;

• specify the motion path to be followed by the welding torch.

The problem being addressed in this thesis relates to programming and para

tuning rather than path specification. Path specification is a problem domain in its

right [9],[43] in which the problems tend to be hardware related. Parameter tunin

an information rich, reactive task to which CPS can be readily applied.

At present, commercial robots are dull-witted assistants to humans: every act

including dynamic corrections - must be planned and programmed. At best the r

can be programmed to use sensory input to adapt their actions during a task, s

are a long way from being independent of their human operators. The more com

the task, the more dependent the robot and the more difficult it is to program; we

is a complex and indeterminate task.
31

Chapter 4. Cooperative Software Application

s and

orma-

rent

is the

d and

uses

here-

raints

pense

which

s.

form

duce

use

atch

lem

nera-

ated

me-

me

oding

turers

asier

placed

olve-

e use

stand-

ange
The welding robot operator needs an understanding of both the welding proces

the setup requirements and is required to interpret a large amount of feedback inf

tion from different sources during setup. Each new batch job may involve diffe

materials, shapes, and welding methods, so an iterative trial and error procedure

only way to devise a working program. Setup requires the labour of an experience

hence expensive human operator, removes the robot from production, and

consumable welding materials: the longer setup takes, the more expensive it is. T

fore, while domains such as power generation impose safety-related time const

on operators, robotic welding setup imposes an economic time constraint. The ex

of setup has mainly restricted the use of seam welding robots to large batches, in

the cost and time of setting up can be amortised over a large number of product

The aim of applying CPS is not to reduce the amount of expertise required to per

setup or to determine how well it can be automated. The key problem is how to re

setup time for an experienced operator, thereby making it more economical to

welding robots for small batches.

4.2 Relevant work in robotic welding

This section describes work that addresses full or partial automation of small b

robotic welding. There is also a discussion of work related to cooperative prob

solving in the robotic welding domain.

4.2.1 Autonomous approaches to setup

Much of the work that addresses robotic welding is designed to make the next ge

tion of robots more independent of the human operator. For example, autom

process control involves dynamically controlling and correcting the welding para

ters, the motion path, or both, using sensory feedback [3],[16],[28],[46]. So

researchers are developing mathematical models of the process [44] or enc

process knowledge as rules [42] to assist closed loop control with sensors.

However, first generation robots represent large investments for many manufac

and will remain in use for years to come, so there is a need for tools to make them e

to use. Human operators need software support, since the hardware cannot be re

in the near term.

4.2.2 Support approaches to setup

There is another body of work that recognises the short term need for human inv

ment and attempts to provide new tools for use in setup. A common approach is th

of expert systems to advise on process parameters [1], [32], however these are

alone, off-line systems which are often too general, providing knowledge over a r
32

Chapter 4. Cooperative Software Application

data-

re

neral,

eci-

era-

The

ftware

lding

lim-

uring

osh-

lligent

ort

atlab

e of

robotic

t

ation

ble to

suit

ork

ufac-

at the

nac

the

nitor

ing
of welding techniques. One exception [18] is an attempt to integrate a parameter

base with off-line programming simulation in order to verify the program mo

completely. So far, no on-line knowledge base support has been provided. In ge

there is a lack of work which specifically addresses the difficult procedure of sp

fying and verifying process parameters.

4.2.3 Cooperative approaches to setup

The only on-line cooperative support for robotic welding setup reported in the lit

ture so far has been that of Reilly [35], which is a domain-specific approach.

system consists of a Macintosh personal computer (PC) running a customised so

package that is capable of analysing and displaying real-time data from the we

process. Although Reilly is employing data presentation, the short term aim is to e

inate the need for post-weld inspection rather than to reduce the time taken d

setup. Reilly further intends to incorporate control of the robot through the Macint

based software. The long term aim is to use the data collected to create an inte

database and decisionmakingmodule that uses rule based methods, not to supp

robot programming by an operator.

There are also several commercial packages, such as LabWindows [25] and M

[29], that provide real-time data visualisation facilities, which give operators som

the advantages discussed in section 2.1. LabWindows has been used to display

welding process data1. LabWindows provides tools for building virtual instrumen

panels, such as a GUI graphical editor and a library of predefined instrument

widgets which can process and display data. Although these packages are a

provide a solution for robotic welding setup, they cannot be generalised easily to

a range of similar applications. They provide tools rather than a design. A framew

has the advantage of providing a generic design solution to the problem of man

turing setup and other reactive tasks.

4.3 The existing welding environment

The welding environment used to evaluate the cooperative framework is located

CSIRO DMT. The environment consists of the Motoman welding robot, the Yas

ERC controller [49], a teach pendant (a portable panel which is connected to

controller and can be used to move the robot arm), and a Welding Data Mo

(WDM). The WDM was developed by CSIRO DMT to acquire process data dur

welding.

1.Welding Group, CSIRO DMT, Adelaide.
33

Chapter 4. Cooperative Software Application

e the

the

ting

rsor

hich

ng the

the

reen

the

PC

them
Figure 4-1 Overview of the robotic welding environment

Welding data is obtained from a separate data acquisition system, in this cas

WDM. The WDM logs data on current, voltage, and temperature, then transmits

data on command via a serial link to a computer.

4.3.1 Yasnac ERC robot controller interface

Figure 4-2. depicts the Yasnac ERC robot controller interface, which is the exis

interface to the controller’s microprocessor and, in turn, to the Motoman robot. Cu

keys and function soft-keys F1 to F5 are used to navigate through menus for w

there are no shortcuts. Navigating menus becomes a time consuming part of usi

robot controller during setup. A keypad allows numeric input, but letters of

alphabet must be picked out one at a time with the cursor keys from a sc

“keyboard” in order to edit job files or specify file names. File management on

controller is limited to loading, saving, and deleting. The storage of job files on a

is the best existing alternative but requires a separate procedure for downloading

to the robot controller.

Yasnac ERC Controller

Motoman Robot

Welding Data Monitor

Welding

Workpiece

scope of research project

status

commands

process
data

Torch

Power Supply
34

Chapter 4. Cooperative Software Application

ured

essing

m a

data
Figure 4-2 Yasnac ERC robot controller panel

4.3.2 Welding Data Monitor interface

The WDM has a separate control and display panel, which is controlled and config

by means of three buttons on the panel. Different commands are executed by pr

different button combinations. The monitor can also be remotely controlled fro

computer connected via a serial link to start recording, stop recording, and send

to the computer.
35

Chapter 4. Cooperative Software Application

nning

y the

spec-

ains

tion of

ecifies

ch

s the

n the

hile

ged on

eous

are

lded

g the

on–

data

nt and

to 10

fica-

ished

ality
Figure 4-3 Welding Data Monitor (WDM)

4.3.3 A typical scenario - existing environment

The setup procedure is a cycle as shown in Figure 1-1, that begins with the pla

phase: an initial specification of parameters and a motion path. This is followed b

replanning phase: program execution (a trial weld), then assessment, then back to

ification to make corrections.

The operator begins by creating a program job file on the controller that cont

settings for the primary parameters such as voltage and torch speed. Initial selec

these parameters is guided by reference to published data. Then the operator sp

a motion path for the robot to follow when welding. This involves using the tea

pendant to move the robot arm around the work piece while the controller record

sequence of coordinates in a file. The coordinates are then embedded withi

program file by the operator.

After creating the files for the job, the operator executes them in a trial run, w

observing the welding process using sight and hearing. Process data can be log

the WDM from the arc power supply and a temperature sensor, with the instantan

values displayed on the WDM numeric displays. If any obvious fault conditions

observed during welding, there is no need for further testing. Otherwise, the we

joint is assessed at the end of the run by examining the joint and by uploadin

WDM process data to a computer for analysis.

The joint may be examined by a combination of visual inspection and other n

destructive testing methods, then finally by destructive testing. The WDM process

provides feedback regarding the actual values of input parameters such as curre

voltage, since these parameters are specified to the controller as a number from 1

rather than absolute values.

If the joint is flawed, the robot program must be corrected and the cycle of speci

tion, execution, and assessment is repeated until it works. Only then are the fin

products welded as a batch job. At this stage the WDM can also provide basic qu
36

Chapter 4. Cooperative Software Application

ccept-

ted to

from

the

ote

nsti-

oller

llow

time

ust be

y of a

mic

he

tatic

test,

tion-

C,

as

hich

cally

rvo

e

ent in

larly
assurance by recording whether parameters such as heat input remained within a

able ranges.

4.4 Requirements for a robotic welding environment

The new robotic welding environment needs to run on a computer that is connec

both the robot controller and the WDM by separate RS232 [19] serial links.

The robot controller is switched to remote mode in which it accepts commands

the computer using a proprietary remote communication protocol. All functions of

controller for robot system control and status monitoring are available in this rem

mode. To initiate welding, the program files and positional coordinate files that co

tute the robot’s instructions for the job must be transferred to the robot contr

before the execution commands are issued.

The purpose of a robotic welding environment should be to assist the operator to fo

a loosely defined setup procedure that produces a satisfactory weld. The

constraints of this task are imposed for economic reasons, since the solution m

found by using as few resources as possible, although there is not the urgenc

power plant emergency. Monitoring the welding process is an on-line, dyna

activity, while program correction and robot control are off-line, static activities. T

aim of the cooperative software must be to present relevant information - both s

and dynamic - to the operator in a meaningful way, while providing the means to

analyse and alter the program.

Two types of requirements are described: those which duplicate the existing func

ality of the Yasnac ERC and those which provide new functions.

4.4.1 Existing functions

The following functions duplicate the existing functionality of the Yasnac ER

including programming, control, and monitoring of the robot.

Robot programming is required by the operator to correct and re-run program files

quickly as possible during setup. This requires a file management scheme w

allows all files to be edited on the remote computer, then downloaded automati

before execution.

Control and statusof the robot system are required, for example: robot arm se

motor (“On”, “Off”), program error status (“Reset”), and arc power (“On”, “Off”). Th

Yasnac ERC’s communication protocol specifies that robot commands can be s

ASCII format to the controller, while system status must be determined by regu

polling the controller.
37

Chapter 4. Cooperative Software Application

the

rms of

nds

ple-

ently

ences

e

ess the

ment

rces,

er-

s on

such

r if a

ses

e able

uch

and

tems.

g-

ment

ing

same

ome

ram-

e job.
4.4.2 New functions

New functionality for a cooperative robotic welding environment is derived from

general requirements defined in section 3.1. Each requirement is discussed in te

robotic welding setup.

A Graphical interface requires common functions, such as robot system comma

“Run”, “Stop”, etc., to be available as buttons, especially if they are already im

mented as buttons on the existing panel. Critical buttons should be promin

displayed. The software environment’s interface should also avoid complex sequ

of menus or keys for executing functions.

Data retrieval and presentationis required in addition to direct observation. Th

operator needs to have feedback data displayed during a test run, in order to ass

program and decide what corrections to make. This requires the software environ

to coordinate and present dynamically changing information from various sou

including the robot, the welding monitor, and other sensors.

Information highlighting requires that the software environment draws the op

ator’s attention to the most relevant information. For example, simple limit alarm

incoming data would allow a user to specify the acceptable range for parameters

as heat input to the weld, and be notified by means of an aural or visual indicato

value is out of range.

Information storage provides the operator with a record of the acquired data. In ca

where the operator needs to confirm the weld assessment, the operator should b

to conveniently review the acquired data immediately after program execution.

Integration of tools allows setup to be carried out from a single environment as m

as possible. This requires integration of the robot with other tools, both software

hardware, such as welding monitors, sensors, knowledge bases, and expert sys

Abstracted functionality specifies that the operator works at the level of weldin

related activities rather than robot commands. The cooperative software environ

should hide the details of the robot controller.

Repository of casescan save the operator significant amounts of time by provid

ready access to previous jobs to use as templates for similar conditions, e.g. the

base metal and joint shape. A single welding job will consist of several job files: s

specifying different aspects of robot movement; others containing parameter prog

ming sequences. Job files should be stored according to the characteristics of th
38

Chapter 4. Cooperative Software Application

and

o the

viron-

ving

etup

that

obotic

ers of

lem

tion
Extensibility requires the software environment to be adaptable for new tools

different models of robot. This enables the most appropriate tools to be added t

cooperative software environment as they become available, and for the same en

ment to be reused with a wide range of robots as appropriate.

4.5 Summary

Small batch robotic welding setup is an effective test of cooperative problem sol

issues, since it is an ill defined, reactive task that requires human involvement. S

also generates a large amount of operational information. The existing tools

support the human operator in the setup task are inadequate. Related work in r

welding focuses on developing better equipment rather than supporting the us

existing equipment. The following functions are required in a cooperative prob

solving environment for robotic welding:

• robot programming and program management;

• control and status of robot systems;

• a graphical interface that mimics real button controls;

• presentation of welding process information from multiple sources;

• highlighting the most important information;

• storage of information for review;

• integration of the robot with other tools;

• abstracted functionality;

• repository of previous job descriptions and their program solutions;

• extensibility to other tools and robots.

The next chapter describes the implementation and validation of the informa

presentation framework, then evaluates the findings.
39

Chapter 5. Design and Implementation

er 3.

otype

are

ed in

tems:

alid

to 5.5

ment

soft-

evel-

ied in

lasses

er and

r and

esen-

oop-
Chapter 5. Design and Implementation

This chapter describes the implementation of the framework defined in Chapt

Section 5.1 describes the toolkit extension and section 5.2 describes the prot

cooperative software environment built from this extension. The prototype softw

environment -The Panel - required some domain-specific code to be implement

addition to the toolkit extension classes. The Panel consists of three main subsys

InterfaceManager, RobotManager, andDataManager. DataManagerimplements the

reusable subsystem design of the framework.RobotManagerimplements the robot

controller’s communication protocol and is needed to make the prototype a v

demonstration of a cooperative problem solving environment. Then sections 5.3

evaluate three aspects of the framework: how well does the software environ

support the operator? how well does the toolkit support the development of the

ware environment? how effectively does the design of the framework support d

opers and indirectly benefit users?

5.1 The InterViews toolkit extension

The toolkit extension classes are based entirely on the framework design specif

section 3.3. The instantiations of Filter and Processor were not implemented as c

because of the trivial nature of the chosen examples. Instead, the examples of Filt

Processor are C functions that are passed as pointers to the WeldMonHandle

DisplayHandler respectively.

5.1.1 Framework classes

The core framework classes implement the design specified in the information pr

tation framework. The features of each component and the ways in which they c

erate are described in more detail in section 3.3.1 and Appendix A.

• DataHandler (abstract class, derived from IOHandler) links data

streams to DisplayHandlers and optional Filters; retrieves and inter-

prets data streams from a data acquisition device via a port, while op-

tionally storing the data to a log file; applies any given Filters then

passes each data stream to the linked DisplayHandler(s);

• Filter (abstract class) removes data values from a data stream that

match the given removal specification;

• DisplayHandler(concrete class) links data streams to Displayers and

optional Processors; applies any linked Processors to incoming data

streams and passes the result to linked Displayer(s);
40

Chapter 5. Design and Implementation

ased

endix

DM.

file

the
• Processor(abstract class) performs a calculation on a data stream and/

or merges two streams;

• Displayer(abstract class, derived from MonoGlyph) displays the val-

ues in a data stream dynamically.

5.1.2 Derived classes

The following derived classes were specialised for the needs of robotic welding b

on the above abstract framework classes; they are described in more detail in App

A:

• WeldMonHandler (concrete class, derived from DataHandler);

• ClippingFilter (concrete class, derived from Filter);

• Multiplier (concrete class, derived from Processor);

• Readout (concrete class, derived from Displayer);

• Histogram(concrete class, derived from Displayer);

• Alarm (concrete class, derived from Displayer).

WeldMonHandler (concrete class, derived from DataHandler)links data streams

to DisplayHandlers and manages the data coming through the port from the W

WeldMonHandler interprets data by referring to a data format file. The “Format”

(Figure 5-1) is set up by the application developer to specify which column of

WDM data file (Figure 5-2) contains the named data streams.

Figure 5-1 Sample WDM data format file

VOLTS0

AMPS1
41

Chapter 5. Design and Implementation
Figure 5-2 Sample WDM data file

The class’s inherited responsibilities are to:

• know the name of the port to which it is attached;

• link one or two named data streams to an optional Filter and to Display-

Handlers;

• start retrieving data from the data acquisition device through the port

and pass it to linked Filters and DisplayHandlers;

• save retrieved data streams to a logfile if specified;

• stop retrieving data;

• start replaying logged data the same way as live data streams;

• stop replaying logged data.

The class’s specialised responsibilities are to:

• know the protocol for retrieving data from the WDM;

• know the format of data coming from the WDM.

Readout (concrete class, derived from Displayer)displays the values in a data

stream as a digital gauge, as shown in Figure 5-3.

Figure 5-3 Readout

8.3234 115 3091

11.6362 113 4224

11.5362 113 4179

11.8364 115 4328

12.2366 113 4492

12.4366 113 4554

12.6366 113 4642

12.7366 113 4681
42

Chapter 5. Design and Implementation

isto-

ari-

mon-
The class’s inherited responsibilities are to:

• draw itself on the screen as a digital gauge to the specified precision,

labelled with the given data stream name;

• update itself with a given data value to the specified precision;

• clear itself.

Histogram (concrete class derived from Displayer)displays the values in a data

stream as a continuously updating bar histogram, as shown in Figure 5-4. The H

gram’s height (resolution of values displayed) and width (amount of history) are v

able. The scale can be changed by the user during a display session.

Figure 5-4 Histogram

The class’s inherited responsibilities are to:

• draw itself on the screen as a vertical bar histogram to a given height;

• update its viewscreen with a bar that represents the new value;

• clear itself.

The class’s specialised responsibility is to:

• allow a user to change its vertical scale.

Alarm (concrete class is derived from Displayer)lights up an indicator button

whenever a value in the data stream goes above the allowable range. Alarm de

strates the function of highlighting.
43

Chapter 5. Design and Implementation

sors.

its of

ection

lls

rned:

s the
Figure 5-5 Alarm

The class’s inherited responsibilities are to:

• draw itself on the screen as an indicator button and an input field;

• update itself by checking whether the value is out of range; if so, to light

up its indicator;

• clear its limit.

The class’s specialised responsibilities are to:

• allow a user to enter an upper limit;

• reset its indicator to “Off”.

5.1.3 C functions

The following C functions demonstrate sample behaviour for Filters and Proces

These examples also illustrate the limitations of using C functions and the benef

using subclass inheritance and member function interfaces as described in s

2.3.1.

ClippingFilter modifies values that fall above a fixed threshold. If the value fa

below the threshold, the value is returned intact; if not, the threshold value is retu

float clippingfilter(float value)

if value < threshold

then return value

else return threshold

Multiply takes two values as parameters, multiplies them together and return

result:

float multiply(float value1, float value2)

return value1 * value2
44

Chapter 5. Design and Implementation

eric

ass of

rm a

both
The function interface for the WeldMonHandler’s linkStream is:

void linkStream(const char* stream1,

const char* stream2,

DisplayHandler* disphdlr,

float (*clippingfilter)(float))

Theclippingfilter function is passed as a pointer tolinkStream . As defined

here, thislinkStream interface can only accept pointers toclippingfilter ,

not to any other kind of filter. Instead, ifclippingfilter were a subclass,

linkStream could be defined as:

void linkStream(const char* stream1,

const char* stream2,

DisplayHandler* disphdlr,

Filter* filter)

Now any subclasses of WeldMonHandler will have the benefit of inheriting a gen

member function interface and be capable of linking streams between any subcl

Filter.

5.1.4 Sample linkage of toolkit components

Figure 5-6 demonstrates how the derived toolkit components can be linked to fo

Data Manager subsystem. A WeldMonHandler calledwdm_hdlr links the stream

labelled “voltage” to a Filter clippingfilter and a DisplayHandler

v_disphdlr and links “current” toc_disphdlr ; then the DisplayHandlers link

each stream to a Histogram and to a Readout.

In order to generate a data stream representing power, “current” and “voltage” are

linked top_disphdlr , which in turn links them tomultiplier , p_histo , and

p_readout .
45

Chapter 5. Design and Implementation

tion
Figure 5-6 Sample code for linking toolkit components

5.1.5 Facilities of the toolkit extension

The toolkit extension components fulfill most of the requirements for an informa

presentation framework specified in section 3.2:

• A WeldMonHandler can retrieve multiple streams of data through a

port from the WDM.

• Multiple DataHandlers can be created to handle multiple ports.

//** create weldmonhandlers and displayhandlers

wdm_hdlr = new WeldMonHandler(portname);

v_disphdlr = new DisplayHandler;

c_disphdlr = new DisplayHandler;

p_disphdlr = new DisplayHandler;

//** create histograms, height = 20 pixels, width = 30 bars

v_histo = new Histogram(20,30,layouts,widgets);

c_histo = new Histogram(20,30,layouts,widgets);

p_histo = new Histogram(20,30,layouts,widgets);

//** create readouts, precision = 1 decimal place

v_readout = new Readout(1);

c_readout = new Readout(1);

p_readout = new Readout(1);

//** link single data streams to filters and displayers

wdm_hdlr->linkStream(“voltage”,””,v_disphdlr);

wdm_hdlr->linkStream(“current”,””,c_disphdlr,

clippingfilter);

v_disphdlr->linkStream(v_histo);

v_disphdlr->linkStream(v_readout);

c_disphdlr->linkStream(c_histo);

c_disphdlr->linkStream(c_readout);

//** link voltage + current to multiplier --> power

wdm_hdlr->linkStream(“voltage”,“current”,p_disphdlr);

p_disphdlr->linkStream(p_histo,multiply);

p_disphdlr->linkStream(p_readout,multiply);
46

Chapter 5. Design and Implementation

er to

llows

ser

cility

botic

asnac

nds

ding

orma-

oes

obot
• A WeldMonHandler can apply a Filter to any data stream, for example

to remove noisy (out of realistic range) data values.

• A DisplayHandler can apply a Processor to any data stream, for exam-

ple: to find the average of the values in a data stream.

• A DisplayHandler can use a Processor to combine two data streams to

produce a new data stream, for example: the multiplication of current

and voltage to produce power; this includes combining data streams

from different ports, i.e. from different data acquisition devices.

• An Alarm (Displayer subclass) can be applied to any data stream to act

as a limit alarm.

• A variety of display components can be derived from the base class Dis-

player; for example: a histogram and a digital gauge.

• DisplayHandler allows any data stream to be displayed in two or more

Displayer objects simultaneously for comparison.

• WeldMonHandler can store all data streams in a file and replay them for

analysis.

• WeldMonHandler can provide the user with start, stop and replay con-

trol.

The only requirement these components do not meet explicitly is allowing the us

choose the presentation configuration. However, the design of the components a

this facility to be implemented at a higher level, for example, by defining a Choo

class that lets the user dynamically recombine presentation components. This fa

is discussed in section 6.1.6 as an enhancement.

5.2 The prototype cooperative software environment

The Panel is a prototype cooperative software environment that supports ro

welding setup. As shown in Figure 5-7, the Panel closes the loop between the Y

ERC robot controller, the Motoman robot, and the Welding Data Monitor. Comma

are sent from the Panel to both the controller and the WDM. The WDM sends wel

process data back to the Panel, but the controller only sends back robot status inf

tion, such as whether the welding arc is “On” or “Off”. For this reason, the Panel d

not use the framework components to present information coming from the r

controller.
47

Chapter 5. Design and Implementation

s, as

rk;

ns
Figure 5-7 Overview of Panel within robotic welding environment

The Panel robotic welding software environment consists of three main subsystem

shown in Figure 5-8:

• InterfaceManagerarranges all interactive InterViews widgets and

framework Displayers that appear on the Panel.

• RobotManagerprovides command and file exchange between the Pan-

el and the robot controller.

• DataManager retrieves, prepares, and presents data from external

sources such as the welding monitor.

InterfaceManageris supported by InterViews and the operating system (OS);Data-

Manager is built from the components of the information presentation framewo

RobotManageris built from custom code which includes a serial communicatio

Yasnac ERC Controller

Motoman Robot

Welding Data Monitor

Welding

Workpiece

scope of research project

status

process
data

The Panel

ASCII
process
datastatus

cmnds cmnds

commands

RS232 RS232

Torch

Power Supply
48

Chapter 5. Design and Implementation

amic

and

sing

s of
module and the encoded Yasnac command protocol.RobotManagerdemonstrates that

the framework can be adapted to a practical application.

Figure 5-8 indicates the portions of the Panel which support static and/or dyn

decision-making. The two distinct halves of the Panel consist of:

1. a static cooperative software environment, supported by InterViews

and OS;

2. a dynamic cooperative software environment, supported by InterViews,

OS, and framework.

Static decision-making support refers to robot program modification, robot control

display of status. Dynamic decision-making support refers to information proces

of welding data. This indicates that InterViews is suitable for supporting both type

environment.
49

Chapter 5. Design and Implementation

the

and

s. The

such,

5-9,

ional

top-
Figure 5-8 The Panel subsystems

5.2.1 InterfaceManager subsystem

InterfaceManagerhandles all interactive controllers and displayers that appear on

screen. The subsystem is built from InterViews components, such as buttons

menus, and toolkit extension display components, such as histograms and alarm

toolkit extension components are built from low-level widgets by theDataManager

subsystem, but their arrangement within the Panel interface is provided byInterface-

Manager subsystem.

The interface widgets and display components are all subclasses of Glyph. As

they can be readily combined into a glyph hierarchy like the one shown in Figure

which corresponds to the Panel interface shown in Figure 5-10. The composit

glyph protocol allows all glyphs in a hierarchy to be updated automatically by the

level ApplicationWindow object whenever the window is resized or redisplayed.

Operator

Robot
Manager

Data
Manager

Robot
Controller

Welding
Monitor

The Panel

Framework

Custom Code

WeldMonHandlers

Filters

DisplayHandlers

Processors

Displayers

STATIC DYNAMIC

InterfaceManager
OS InterViews+

Port module

Yasnac protocol
50

Chapter 5. Design and Implementation

yout

trate

ins

es
The sample glyph hierarchy forInterfaceManagerdemonstrates the simplicity of the

application developer’s task in using the toolkit and extension components. No la

glyphs such as spaces are shown, since they are not necessary to provideInterfaceM-

anager’s functionality.

Figure 5-9 Sample glyph hierarchy forInterfaceManager subsystem

The layout of the Panel’s interface (Figure 5-10) is a prototype intended to demons

possibilities, not to be a definitive solution. The left-hand side contains theRobotMan-

agercontrol elements (e.g. “Stop”, “Servo”, “Run”) while the right-hand side conta

theDataManagercontrol elements (e.g. “Start Watch”, “Stop Watch”, various typ

of Displayers). The menu provides further control of bothRobotManager(“File”

menu, “Run” menu) andDataManager (“Watch” menu) functions.

ApplicationWindow

Margin

CheckBox

Hbox

Vbox Vbox

Hbox

2 Buttons

Hbox

Menu

Hbox

2 Buttons

ReadoutHistogram

Vbox

4 Buttons 3 Buttons

Vbox

Display
Set

Display
Set

Display
Set

Display
Set
51

Chapter 5. Design and Implementation

ft-

the

ude

bility

est/

en the

rver,

hange

ent”,

anged

ists

er for

tions

es of
Figure 5-10 The Panel cooperative software environment

5.2.2 RobotManager subsystem

RobotManagersupports strictly static decision-making within the cooperative so

ware environment. This includes off-line programming, status, and control of

robot, i.e. activities performed when the robot is not welding. It does not incl

dynamic information presentation. Once theRobotManagerinitiates execution of a

welding job, the operator has no dynamic control of the process apart from the a

to stop it.

RobotManagerimplements the Yasnac’s handshaking protocol (consisting of requ

acknowledgement sequences) to provide command and file exchange betwe

Panel and the robot controller. In this protocol, the robot controller acts as a se

while the Panel acts as a client, i.e. the Panel initiates all exchanges. Each exc

consists of common elements, such as “send command”, “wait for acknowledgem

or “start file send sequence”. Files such as programs or coordinate files are exch

by packing/unpacking them into multiple data frames of fixed size. A frame cons

of a header, then a block of data, then a trailer containing a checksum charact

error checking.

Each common element of the protocol is performed by a separate C function. Func

are then combined in different sequences to perform each of the required typ
52

Chapter 5. Design and Implementation

ort is

rent

the

s are

rated

f the

s as

an-

erial

sed on

ach

may

f two

ually in

ch

ts, or

is

-

h

er
exchange. The actual reading and writing of commands to the communication p

performed by a Port module that uses basic Unix file input/output functions.

A different RobotManager could be substituted to allow the Panel to control a diffe

model of robot without affecting the other two subsystems.

5.2.3 DataManager subsystem

DataManagerimplements the cooperative framework design to retrieve data from

WDM and prepare it for display.DataManageris built from the InterViews extension

classes: WeldMonHandlers, DisplayHandlers, Histograms, and Readouts. (Alarm

not shown in this example interface). Additional sources of data could be incorpo

by deriving an appropriate DataHandler subclass, without affecting the rest o

Panel system.

A WeldMonHandler requests and receives serial data from the WDM. Data arrive

a series of lines of multiplexed ASCII values and is interpreted by the WeldMonH

dler to form multiple simultaneous data streams. A WeldMonHandler can accept s

streams from multiple external sources simultaneously. Each data stream is pas

to the DisplayHandlers linked to the WeldMonHandlers, optionally via a Filter. E

DisplayHandler receives a single or double stream from a WeldMonHandler and

process the data via a Processor function. (In the Panel prototype, a maximum o

streams can be passed by DataHandlers, since data streams are passed individ

the DataHandler’supdate member function.) The DisplayHandler then sends ea

data stream onto the Displayers in its charge, which may be Histograms, Readou

Alarms.

A sample DataManagerobject-instance graph is shown in Figure 5-11. In th

diagram, the WeldMonHandler,wdm_hdlr , is associated with three DisplayHan

dlers, which indicates thatwdm_hdlr is handling three streams of data, one of whic

is filtered byclippingfilter . The DisplayHandlerp_disphdlr is associated

with multiplier . Then each DisplayHandler is associated with two Display

subclasses.
53

Chapter 5. Design and Implementation

ions

gure

bot

sfully

type

ould

ggle

the

from

un”

”

Figure 5-11 Sample object-instance graph forDataManager subsystem

5.2.4 Panel functionality

The Panel prototype shown in Figure 5-10 is capable of being fitted with all funct

relating to setup that are currently available on the robot controller shown in Fi

4-2. The Panel provides additional functions for writing and debugging the ro

programs that were not available on the robot controller. The Panel can succes

transfer files between the computer and the robot controller. The Panel proto

demonstrates how all the functional requirements for support of robotic welding c

be implemented in a fully functional system.

The push buttons, e.g. “Run”, issue commands to the robot controller. The to

buttons - those with indicators, e.g. “Arc” - both control and display the status of

robot by means of a polling function, which regularly requests the robot’s status

the robot controller. The “File” menu provides program file management, the “R

menu providesRobotManagercommands, such as “Download”, “Upload”, “Run

programs and “Teach” to set the robot to Teach mode.DataManagerbuttons “Start

(WeldMonHdlr)

(Filter)

(DisplayHdlr)

(DisplayHdlr)

(DisplayHdlr)

(Histogram)

(Histogram)

(Readout)

(Readout)

(Readout)

(Histogram)

(Processor)

clippingfilter

multiplier

wdm_hdlr

v_disphdlr

c_disphdlr

p_disphdlr

v_readout

p_readout

v_histo

c_histo

c_readout

p_histo

Key

= association by message passing

= object

W
D

M

S
C

R
E

E
N

 D
IS

P
LA

Y

= association with external entity
54

Chapter 5. Design and Implementation

file”

gle

d key

Table

taken

does

ates
Watch” and “End Watch” control the data presentation session, and a “Watch:Log

menu option specifies a file for incoming data to be stored. The “Live/Replay” tog

button allows data to be replayed after the welding session.

Existing functions have been changed, from a long series of menu selections an

presses on the robot controller, to a few buttons and menu items on the Panel.

5-1 compares the Yasnac controller and the Panel in terms of the number of steps

to perform the same functions using both interfaces. Although this comparison

not address functional complexity, the reduced number of steps intuitively illustr

the advantages of the Panel interface.

Table 5-1 Interface comparison: Yasnac ERC vs Panel, by no. of steps

Function Yasnac controller No. of
Steps

The Panel No.of
Steps

New job [Teach]
[F3] new job
[F4] job
[F1] alphabet
cursor to locate letter
[Enter]
cursor to locate letter
[Enter]...
{etc.}
[F5] exit
[Enter]

7 menu: File, New
menu: File, Save as...
type name
click OK

4

Load job [Teach]
[F4] other job
[F4] page down.
cursor to job
[Enter]

4-5 menu: File, Open
double click dir...{opt}
double click job

2-3

Edit line cursor to line...
[Edit]
[F4] line edit
[F1] data change
type new numbers
[Enter]
[Enter]

7 cursor/scroll to line....
insert cursor
[Delete]
type new numbers/letters
menu: File, Save

5

Delete job [Teach]
[F4] other job
[Edit]
[F3] job delete
[F4} page down...{opt}
cursor to job
[Enter]
[F5] execute

7-8 or
more

menu: File, Delete
double click dir...{opt}
double click job
click OK

3-4
55

Chapter 5. Design and Implementation

ed in

plan-

at is

This

he

data

t can

teach

roller,

eter

ll be

and

ring

ult

pene-

alyse

d or

or this

io.

ormal

not

joint

next

data

for
5.2.5 A typical scenario - the new environment

This section compares the new setup scenario with the old scenario describ

section 4.3.3. The proposed new setup procedure using the Panel also follows the

ning/replanning procedure described in Figure 1-1.

Planning can begin with the operator searching/browsing for a previous job th

similar to the welding job at hand, rather than referring only to published data.

existing job will provide a template (starting point) for parameter specification. T

operator modifies the new job program using the text editor, based on published

and experience.

Next comes the teaching procedure to specify a motion path. Although the robo

be placed in teach mode from the Panel, the teach pendant must still be used to

the robot arm its motion path. The teach pendant sends coordinates to the cont

which are later embedded by the operator in the current job program.

Now the replanning cycle begins with the execution of the robot program.

Before running the program, the operator can set limit alarms on various param

data streams. When the run command is invoked, all relevant files for the job wi

automatically downloaded to the robot.

During the trial run the operator observes the process: both directly, by watching

listening to the robot, and indirectly, by watching the dynamic display of data du

welding. The limit alarms free the operator from having to watch for obvious fa

conditions. Direct observation is still necessary to detect conditions such as poor

tration or spatter, but the operator no longer has to wait till the end of the run to an

the process data. During the run, if any obvious fault conditions were observe

detected by the Panel, the program may be stopped and corrected immediately. F

reason, detection of such faults is likely to be much faster than in the old scenar

Otherwise, at end of the trial run, the operator can play the process data back at n

speed or slower, either to confirm or detect a fault condition. This facility was

available in the old scenario. If the process data indicate no faults, the welded

itself can be tested, either destructively or non–destructively.

If necessary, the operator makes corrections to the program before starting the

cycle of testing, which continues until the welded joint is acceptable. The process

log is readily available to document the joint quality for post-weld analysis or

further research.
56

Chapter 5. Design and Implementation

the

panel

valu-

artic-

ed by

and

cision

nt of

lding

for-

sign

vel-

to

e to a

er is

ca-
5.2.6 Demonstration

The Panel was demonstrated to evaluation panel2 in two stages:

1. TheRobotManagersubsystem was used to transfer a file from the com-

puter to the controller and back again. This verified that remote com-

puter control of the robot would be possible, since file transfer is the

most complex operation in the remote protocol.

2. TheDataManagersubsystem was tested with the WDM to ensure that

the Panel could successfully request, obtain, and display multiple

sources of data.

DataManagerwas demonstrated by having it retrieve a pre-recorded session from

Welding Data Monitor. The session was then replayed, enabling the evaluation

to see how the live session would have appeared. Note that the objective of the e

ation was to assess the overall usability of the system, without reference to any p

ular welding procedures. In this regard, the demonstrations were a success.

The evaluation panel considered that the data presentation capabilities provid

DataManagerwere a vast improvement over that provided by the existing system

that these enhanced capabilities could be expected to impact positively on the de

making processes required in both setup and quality control. Determining the exte

this anticipated benefit would have required extensive trials using a range of we

procedures and was deemed to be beyond the scope of this project.

Demonstration of this prototype shows that it would be feasible to implement the in

mation presentation framework as a cooperative software environment.

5.3 Evaluation of the framework

This section evaluates the framework in terms of how well it provides a reusable de

for cooperative environments. This is looking at the framework from the toolkit de

oper’s point of view. The implementation effort of developing the toolkit extension

fit the framework design is also examined.

5.3.1 Framework design

There are several aspects of the cooperative framework which are an advantag

toolkit/application developer. One is the provision of a ready-made design, anoth

the potential for reusability of the design for different toolkits and different appli

tions, and a third is the extensibility of the application based on this framework.

2.Members of the Welding Group, CSIRO DMT, Adelaide.
57

Chapter 5. Design and Implementation

ft-

s not

nked

each

build

s not

cause

lready

ct-

t be

port

nal

of

lkit.

ement

yer

le to a

these

ting

ot a

rative

t the

tfor-

play-

he

f code

le to

ndix

of a

y in
Design of a subsystem- the basic information presentation facilities of a CPS so

ware environment are provided by the framework design. This design specifie

only the types of component that need to be built, but the ways in which they are li

together. However, the design is flexible, in that the numbers and combination of

component can be varied, while Filter and Processor components are optional. To

an application, specific components will need to be implemented, but this doe

require the design to be changed. The application developer’s effort is reduced be

there is a specific architecture to implement, so decisions about structure have a

been made.

Generic design- a developer should be able to apply this framework to any obje

oriented GUI toolkit, although the implementation of individual components migh

different. For example: the DataHandler class has the benefit of inheriting

handling and timer functions from the IOHandler; Displayers inherit a compositio

display protocol from MonoGlyph. However, the framework takes advantage

typical GUI toolkit features to specify a generic cooperative problem solving too

For example: common widgets such as buttons and menus can be used to impl

static control functions; graphical drawing primitives allow specialised Displa

components to be created. In addition, the framework design should be applicab

wide range of reactive applications, based on the premise that operators in

domains need on-line presentation of information.

Expansion of the design- the framework can be easily expanded around the exis

design. The prototype developed under the guidance of this framework is n

complete cooperative interface, but it serves to demonstrate how a real coope

software environment could be built without needing to change anything abou

design, only by adding more of the same components.

5.3.2 Framework implementation effort

Extending InterViews to implement the framework design proved to be a straigh

ward exercise. Nine new classes were built: DataHandler, WeldMonHandler, Dis

Handler, Displayer, ClippingFilter, Multiplier, Histogram, Alarm, and Readout. T

development of these classes required approximately 600 un-commented lines o

(ULOC). Implementing Filter and Processor abstract classes would add very litt

the total effort required; for a class description of Filter and Processor, see Appe

A, and for a proposed ClippingFilter and Multiplier, see Appendix B.

5.4 Evaluation of the toolkit extension

This section looks at how well the toolkit extension facilitated the development

cooperative software environment. Four of the CPS techniques from the taxonom
58

Chapter 5. Design and Implementation

lying

also

nt of

ed on

hys-

data

Inter-

ised

s has

f data

func-

ing

phis-

ent

nsion

direct

on by

ower,

by

ed to

in the

alues.

aced
section 2.1.1 have been encapsulated in the toolkit extension. The effort of app

the toolkit components to the prototype cooperative software environment is

examined. The toolkit extension is evaluated from the application developer’s poi

view.

5.4.1 Cooperative software techniques

The toolkit extension classes employ four cooperative software techniques bas

the taxonomy described in 2.1.1:

• visualisation;

• filtering;

• summation;

• highlighting.

Visualisation converts a stream of numeric data into a visual representation of a p

ical quantity or quality. The toolkit extension provides the means for any numeric

source to be represented visually using a Displayer component. The existing

Views graphical drawing elements such as lines and text labels allow custom

Displayers to be created relatively easily. Once a library of Displayer component

been developed, they can be used in different cooperative environments.

Filtering removes unnecessary data values in order to reduce the total amount o

that users have to process. The DataHandler allows filters (implemented as C

tions) to be attached to any incoming data stream. A simple form of filtering (clipp

filters) has been implemented to demonstrate how it is possible to attach more so

ticated filters to data streams.

Summationcan take several forms, but generally combines data from differ

sources in such a way as to increase the amount of information. The toolkit exte

provides the means for separate parameters to be viewed simultaneously for

comparison. The ability to process and merge data streams provides summati

combination. For example, current and voltage can be merged and displayed as p

then compared to current and voltage.

Highlighting draws the user’s attention to particular information; this is provided

deriving specialised Displayer components. A subclass of Displayer can be attach

any data stream and used to alert the operator of a particular condition being met

data. For example, the Alarm used in the Panel detects values outside a range of v

The toolkit extension allows similar highlighting components to be created and pl

on the screen in the same manner as other Displayer components.
59

Chapter 5. Design and Implementation

ilter,

way

this

ta-

kage

lines

erar-

d

g the

than

col -

le-

the

ut, and

d the

the

ent.

in a

uire-
5.4.2 Toolkit extension application effort

Once they are defined, the toolkit extension classes WeldMonHandler, ClippingF

Multiplier, DisplayHandler, Histogram, Alarm, and Readout are used in the same

as existing InterViews toolkit components. For visible interface components

happens in two stages:

• generating and linking components - to other components or to func-

tions;

• arranging components on the screen.

Creating theDataManagersubsystem, which configures all the information presen

tion components, follows this pattern. Figure 5-6 describes the generation and lin

of all components required to produce the Panel shown in Figure 5-10. Additional

of code are required to arrange the visible Displayers into self-contained glyph hi

chies such as the Display Sets shown in Figure 5-9. Overall, creating theDataManager

subsystem took approximately 200 ULOC.

The effort required to buildInterfaceManager, which arranges all control widgets an

Display Sets on the control panel, was approximately 400 ULOC. Therefore, usin

given toolkit extension classes in the prototype application took no more effort

using the existing InterViews interface classes.

In addition to theInterfaceManagerandDataManagersubsystems, theRobotMan-

ager subsystem - most of which consisted of the Yasnac communication proto

required approximately 700 ULOC to implement. The total effort required to imp

ment the Panel was 1200 ULOC.

The existing InterViews classes that were used in the Panel worked well with

extension classes. The new interface components such as the Histogram, Reado

Alarm were easily incorporated into the user interface, because they inherite

glyph protocol that enables composition into a glyph hierarchy.

5.5 Evaluation of the cooperative software environment

This section looks at how well the robotic welding software environment supports

operator during setup, in comparison with the existing Yasnac controller environm

The list of requirements in section 4.4 explained why each function is useful

robotic welding environment, while this section describes how each functional req

ment was met; it evaluates the framework from the operator’s point of view.
60

Chapter 5. Design and Implementation

ftware

an

n and

oxes

nt of

ere

ators.

gle

sible,

key

ttons.

r

bined

ts for

layers.

lding

make
5.5.1 Evaluation against requirements

This section evaluates the Panel against the requirements for a cooperative so

environment for robotic welding described in section 4.4:

• robot programming and program management;

• control and status of robot systems;

• a graphical interface that mimics real button controls;

• presentation of feedback information from multiple sources;

• highlighting the most important information;

• storage of information for review;

• integration of the robot with other tools;

• abstracted functionality;

• repository of previous job descriptions and their program solutions;

• extensibility.

Robot programming and managementusing the Panel is faster for the operator th

using the robot controller environment, since the program editor can be full scree

mouse driven and can be configured to run the user’s preferred editor. Dialogue b

that allow browsing are provided for file management, which reduces the amou

typing and navigating through menus.

Robot control and status- the Panel duplicates all the status indicators that w

available on the controller, using toggle buttons that are both indicators and actu

Graphical interface - the Panel’s interface is graphical and mouse driven, with sin

buttons and shallow menus to activate each function of setup. Wherever pos

graphical icons are used to control the presentation of information to minimise

presses, for example, the histogram’s vertical scale is adjustable using arrow bu

Data retrieval and presentation- the Panel provides a flexible environment fo

observing welding process parameters during welding. Parameters can be com

and processed, then displayed in the most relevant format or in several forma

comparison. Parameters can also be compared to each other in adjoining disp

The operator can examine the information according to which aspects of the we

process are important and see information displayed in an appropriate format, to

comprehension and hence diagnosis faster and easier.
61

Chapter 5. Design and Implementation

s to

mit

r more

raw

g the

bot

ing,

anel.

ater at

edited,

nc-

n the

cept-

still

oper-

ever

eatly

le

ing

ticular

ed as

y an

n the

ates a

that

ote

ld-

ents.

an be
Highlighting - the Panel allows visual alarms to be set on incoming data stream

alert the operator to obvious welding fault conditions. In this prototype, simple li

alarms have been implemented, to demonstrate how this feature could be used fo

sophisticated detection algorithms.

Data storage- the data logging facility of theDataManagersubsystem provides a

simple and convenient tool for post-weld analysis. The data in the log file is the

data from the monitoring sources. The log file can be analysed either by replayin

display session or by copying the data to the screen or to paper.

Integration of tools - the Panel provides a single development environment for ro

programming from which the entire setup procedure can be controlled. Cod

executing and debugging of robot programs can all be performed within the P

Parameters can be observed and recorded during execution, then replayed l

normal speed. Program correction is faster and easier because programs can be

downloaded, and executed in a single environment.

Abstracted functionality - instead of needing to remember complex menu and fu

tion key pathways, the operator has all the required functions readily available o

panel. The operator can concentrate on determining whether the trial weld is ac

able or not. The low-level knowledge required to construct robot programs is

necessary, due to the restrictions imposed by the robot system. For example, the

ator is still required to know the syntax of the robot programming language. How

the interface and the available tools to support programming have been gr

improved, thereby giving the operator a clearer view of the task.

Repository of cases- the InterViews FileChooser widget (Figure 2-1) provides simp

graphical file manipulation for saving, loading, and deleting files and for retriev

them based on keywords. Working programs can be stored as examples for a par

set of welding conditions, indexed by the appropriate keywords so they can be us

templates (starting points) for similar jobs.

Extensibility - the Panel’s design is object-oriented, so it can easily be extended b

application developer. The robot-specific command protocol is encapsulated i

RobotManagersubsystem and can be replaced with a subsystem that encapsul

different protocol without affecting the rest of the system. The type of functions

the controller provides are likely to be available on any robot that allows rem

control. Similarly, theDataManagersubsystem contains an interchangeable We

MonHandler that can be replaced or extended with other device-specific compon

Data can be displayed using a library of components to which new components c
62

Chapter 5. Design and Implementation

ns,

an be

soft-

per-

with

nfor-

rative

all

oller

anel

ese

sses

re no

and
readily added.DataManagercan incorporate new display types, processing functio

and filters.

5.6 Summary

This chapter has demonstrated that the information presentation framework c

implemented as a toolkit extension and used as part of a prototype cooperative

ware environment. The InterViews extension components provide four of the coo

ative techniques defined in the taxonomy in 2.1.1. Using these components along

InterViews widgets, the framework design was successfully implemented as an i

mation presentation subsystem and used to build the Panel, a prototype coope

software environment for robotic welding. The Panel is capable of being fitted with

the main functions relating to setup that are currently available on the robot contr

to support both static and dynamic decision-making. Demonstrations of the P

enabled welding experts to confirm that a fully functional system containing th

features would be useful in supporting robotic welding. The toolkit extension cla

are used in the same way as existing InterViews toolkit components, and requi

more implementation effort to use. The next chapter will discuss contributions

enhancements arising from this research project.
63

Chapter 6. Future Work and Conclusions

tions,

ftware

the

ork

blem

ma-

toolkit

hesis.

of the

cases.

ulti-

ditor

ve-

ct-

ith the

ct-

Like-

obot

rnal

ecify

uld

func-

iews,

Inter-
Chapter 6. Future Work and Conclusions

This chapter discusses the work presented in the thesis with respect to contribu

enhancements, and future work. Enhancements to both the Panel cooperative so

environment and to the toolkit extension are outlined. Future work may involve

inclusion of high-level CPS techniques in the framework, evaluation of the framew

in other testbeds, and the use of the framework to conduct research into pro

solving. Contributions include a cooperative problem solving taxonomy, an infor

tion presentation framework that addresses some of these techniques, and a

extension that helps validate that framework.

6.1 Enhancements

This section discusses areas for improvement to the work presented in this t

Possible enhancements to the Panel include full object-oriented implementation

Panel, advanced robot program debugging, and a knowledge base of previous

Enhancements to the toolkit extension include expert parameter limit alarms, m

media presentation components, and user configuration of theDataManager

subsystem.

6.1.1 Object-oriented implementation

Not all parts of the Panel were implemented in an object-oriented language: theRobot-

Managersubsystem was written in C, and the program editor is a standard text e

invoked from the operating system.

RobotManager(as described in section 5.2.2) was largely written in C for con

nience, but could be better integrated with the toolkit if it was written in an obje

oriented language such as C++. For instance, the protocol needed to interact w

robot controller could utilise the InterViews IOHandler component. An obje

oriented design and implementation would also make the components of theRobot-

Managersubsystem available for reuse in other machine-specific subsystems.

wise, a library of communication modules could be created for different vendors’ r

controllers.

The Panel provides a text editor for job program modification by invoking an exte

editor via the operating system. This has the advantage of allowing users to sp

their editor of choice. However, a specialised editor for robot programming wo

improve the coherence of the cooperative software environment, in terms of both

tion and appearance. Such an editor could easily be constructed using InterV

perhaps based on Textedit, a sample document editor that is provided with the

Views installation.
64

Chapter 6. Future Work and Conclusions

be

ing a

uter

and

play-

e job

ation,

mon

rch a

mon-

rds.

ording

rame-

ing

e, or

erator

ided

s and

iag-

uch as

the

artic-

ored

it is

me-

ted to

Han-

ts that
6.1.2 Advanced program debugging

The inclusion of timing information with the log file would enable sensory data to

synchronised and directly compared with the steps in the program, perhaps us

step/watch function similar to that of a development environment for comp

programming. This feature, combined with the presentation of real-time video

audio would enable more comprehensive analysis of the welding process using a

back feature. Video, audio, and other sensory data could be compared with th

sequence at various speeds. With more dynamic control of the presented inform

the operator would have a better chance of detecting problems in the program.

6.1.3 Knowledge base of cases

The ability to recall the details of previous jobs - case-based reasoning - is a com

starting point for human problem solving. The operator should be able to sea

repository for cases with similar characteristics to the job at hand. The Panel de

strates a facility for searching through a collection of data files using keywo

However, a better solution would be a knowledge base of cases, organised acc

to the characteristics of the job. Such a knowledge base could provide sets of pa

ters for initial specification of similar jobs. In addition, the process of categoris

cases according to their characteristics (such as by workpiece metal, joint typ

welding technique) may lead to a better understanding of the problem domain.

6.1.4 Parameter limit alerting

The Panel allows visual alarms to be set on incoming data streams to alert the op

to obvious welding fault conditions. A rule base of these conditions could be prov

in terms of measured parameters, allowing the operator to retrieve prepared alarm

install them with the appropriate input data streams. In addition, a self-learning, d

nosing expert system could detect more subtle anomalies in the incoming data, s

those relating to closely coupled parameters.

6.1.5 Multimedia data presentation

A CPS framework should allow different forms of information to be presented to

operator. This may include multimedia, such as video and audio, which can be p

ularly useful in situations where the operator is not able to observe the monit

system directly. Some user interface toolkits already cater for multimedia and

likely that they will routinely do so in the future [5].

How should multimedia be incorporated into CPS toolkits? The cooperative fra

work has been designed for continuous streams of serial data, but could be adap

parallel streams of video data. The mechanism of DataHandlers, Filters, Display

dlers, Processors, and Displayers should form a sound basis for specialised objec
65

Chapter 6. Future Work and Conclusions

iffi-

good

t the

ation

ith a

een

may

ram-

ing.

mise

data

ify and

me-

e the

tem.

ithin

ation

face

lette.

ing

need

lem.

ities

s, but

all

oft-

ious

ource

e used

user

ation
work well for these more demanding forms of data. Multimedia presentation is a d

cult problem; for example, video and audio data must be synchronised. But given

solutions to these specific problems, this framework can help the developer pu

components together to build multimedia CPS systems.

6.1.6 User–configured information presentation

In the current toolkit, components are designed to be assembled by the applic

developer into an information presentation system. The operator is presented w

fixed set of display facilities by the developer. This can result in a mismatch betw

the operator’s task and the monitoring tools available. For example, the operator

only need to examine two parameters to solve a particular problem - the other pa

eters are irrelevant, so they use unnecessary screen space and may be distract

A possible enhancement to the toolkit extension would allow the operator to custo

the information presentation system. A dialogue box containing a list of available

streams, filters, processors, and displayers could be used by the operator to spec

configure various views of the data. This feature would not require the current fra

work to be changed; rather it need only be extended to a higher level to provid

mechanism for dynamic, user configuration of the information presentation sys

Instead of information presentation being defined by the application developer w

the program, it could be defined by a Constructor class; for example, a configur

file (used for persistent configuration) could be used in conjunction with an inter

dialogue box for user manipulation.

The operator would then be able to choose the most appropriate tools from a pa

The view of data could be changed to focus on the current activity, thereby allow

the operator to assess and act on the situation more quickly. The drawback is the

to spend extra time configuring the display elements rather than solving the prob

This could be allayed by having default configurations for the most common activ

and by saving frequently used configurations. The operator should have choice

not be forced to configure every display.

The prototype cooperative software environment could be improved by writing

modules in C++; for example, theRobotManagersubsystem could be built from a

library of communication modules for different vendor’s robot controllers. The s

ware environment could incorporate a full knowledge base of solutions to prev

cases, organised according to the characteristics of the problem. Another useful s

of automated expertise would be a rule base of acceptable parameter ranges, to b

as ready-made limit alarms. The toolkit extension should be expanded to allow the

to configure the information presentation components and to allow the present
66

Chapter 6. Future Work and Conclusions

uture

the

l CPS

d the

(as

the

ation

ay as

main

based

n advi-

the

ding

f a

, for

hides

idual

tion of

erely

ed.

be

l of a

to be

sen-

ctions

te.
and synchronisation of multimedia feedback. The next chapter outlines some f

work arising from these contributions.

6.2 Future Work

Some future work arises out of the framework described in this thesis and from

software prototypes developed. This section discusses the inclusion of high-leve

techniques in the framework, evaluation of the framework in other testbeds, an

use of the framework to conduct research into problem solving.

6.2.1 High-level cooperative problem solving techniques

This section considers how to incorporate the higher-level CPS techniques

described in section 2.1.1: multiple views, advising, and problem structuring) into

framework.

Advisory modules could be defined as components of the information present

architecture, able to be associated with particular data streams in the same w

filters and displayers. Although such components would require access to do

knowledge, a generic component could be defined that displays advice to users

on the assessment made by a separate, specialised decision-making module. A

sory module need not be any more sophisticated than a textual display.

Multiple views of the data could be provided by utilising dynamic configuration of

DataManagersubsystem, as described in section 3.3. This could be realised by ad

a higher levelView component to the framework. A view would be composed o

complete set of information presentation components for a particular purpose

example a zoom view that shows many different aspects of one parameter and

all other parameters. Instead of the user configuring the components on an indiv

component basis, the user switches between these predefined views. The addi

multiple views doesn’t require any changes to the framework’s basic design, it m

extends it to a hierarchical structure.

Adding problem structuring to the framework will probably prove more complicat

Like multiple views, problem structuring requires a hierarchical structure to

imposed on the components of the information presentation. To follow the mode

cooperative design software environment described by Fisher, there would need

a critiquing module and a palette of tools (in this case a palette of information pre

tation components, as described above). The critiquer could then oversee the a

of the operator and make suggestions and corrections based on the system sta
67

Chapter 6. Future Work and Conclusions

GUI

tup

ld be

and

ork

obotic

ons.

hine

tured

ic data

lving.

t that

, the
6.2.2 Other testbeds

To validate the ideas presented in this framework, InterViews was chosen as a

toolkit from which to construct CPS extension classes, while robotic welding se

was chosen as a testbed CPS application. However, a useful framework shou

applicable to other toolkits and to a range of similar domains.

To further validate the framework, it should be implemented in other GUI toolkits

applied to other reactive domains by deriving more toolkit components. More w

needs to be done to ensure that the design is not biased towards InterViews or r

welding and to come up with a broadly useful generic specification for CPS extensi

6.2.3 Study of problem solving

A cooperative software environment would be a useful tool for research into mac

learning. By having human domain experts working in a responsive and struc

environment such as the Panel, it would be possible to record and analyse specif

about decisions that leads to a better understanding of expertise and problem so

The Panel could be the basis for an intelligent cooperative software environmen

learns directly from the decisions made by operators of the environment.

6.3 Conclusion

This thesis makes the following contributions to CPS:

1. definition of a cooperative problem solving taxonomy that helps iden-

tify:

• low-level activities that need to be supported in a CPS system for

reactive environments;

• a subset of these activities needed for dynamic replanning of weld-

ing parameters, which has been endorsed by welding experts as be-

ing useful for robotic welding setup;

2. definition of a framework that supports these techniques to provide a

reusable design for the information presentation activities in a cooper-

ative software environment;

3. demonstration of a toolkit extension to InterViews that implements the

framework design and is no more difficult to use than the existing user

interface toolkit.

The following sub-sections will discuss the contributions made by the taxonomy

framework, and the toolkit extension in more detail.
68

Chapter 6. Future Work and Conclusions

lving

blems

thesis

sks,

has

sified

s into

vided

for

esen-

olkit

n for

s that

bed in
6.3.1 Cooperative problem solving taxonomy

This section summarises the contributions of the cooperative problem so

taxonomy described in section 2.1.1. Many researchers focus on the specific pro

of one application domain, rather than the generic problems of CPS. Instead, this

examines the CPS work being done in the domain of ill-structured, reactive ta

particularly in dynamic replanning of manufacturing processes. Rencken [34]

examined a wide range of adaptive aiding techniques in the literature and clas

them according to the method of reducing the operator’s workload:

• transformation;

• partitioning;

• allocation.

This thesis classifies a narrower range of techniques appropriate to reactive task

a new taxonomy of seven types, ordered from low to high levels of assistance pro

to the operator:

• visualisation;

• multiple views;

• filtering;

• highlighting;

• summation;

• advising;

• problem structuring.

This taxonomy is designed to identify the most appropriate low-level techniques

incorporation in a generic cooperative problem solving framework.

6.3.2 Information presentation framework

This thesis proposes a framework - a set of cooperating classes for information pr

tation - which, when used as part of a user interface toolkit, become a CPS to

extension. The framework provides application developers with a reusable desig

applying CPS techniques to reactive decision tasks.

The techniques described in this framework do not represent all the approache

have been used in other CPS work. Based on the taxonomy of techniques descri

section 2.1, the framework employs four low-level forms of assistance:

• visualisation;
69

Chapter 6. Future Work and Conclusions

are

dvi-

iques

deci-

ign.

ented

lasses

ough

es into

ion.

CPS

eeds

s and

ious

ent

olkit

nt is

mely

rather

to a

n be

ng in

need

such

blem

po-

ents

y data
• filtering;

• highlighting;

• summation.

These techniques can be implemented with little or no domain knowledge and

therefore more readily incorporated in a generic framework than, for example, a

sory or problem structuring techniques. The framework incorporates these techn

into a design for an information presentation subsystem, which provides dynamic

sion support in a cooperative problem solving system.

6.3.3 Toolkit extension

The toolkit extension implements the information presentation framework des

Low-level support for CPS can be readily packaged in the classes of an object-ori

toolkit, because the core classes specify the behaviour of all specialised subc

derived from them. All the application developer needs to do is specialise en

classes to suit the application, then compose both generic and specialised class

a system, rather than having to design and implement a complete CPS applicat

The main advantage of extending a user interface toolkit for CPS is that many

requirements can already be met by a GUI toolkit. A CPS software environment n

to cover both static and dynamic aspects of a reactive task. Most static function

some dynamic functions for control and monitoring are easily provided by var

kinds of buttons and indicators. The toolkit extension was only required to implem

classes to handle the flow and processing of data into information.

The development of the prototype software environment has validated the to

extension in terms of potential for practical applications. The software environme

capable of supporting the operator by presenting information and controls in a ti

and appropriate manner. The interface enables the operator to focus on the task,

than the procedure for performing the task. The toolkit is flexible enough to cater

wide variety of applications, since it is based on simple components that ca

composed in a variety of ways.

6.3.4 Summary

This thesis has investigated the problem of supporting cooperative problem solvi

complex, reactive systems such as robotic welding. The low level activities which

to be supported if cooperative problem solving is to be deployed successfully in

systems were identified and classified according to a novel cooperative pro

solving taxonomy. A framework, i.e. a reusable design containing cooperating com

nents, was defined to support these low-level activities. The framework compon

were designed to work together in specific ways to present unprocessed sensor
70

Chapter 6. Future Work and Conclusions

was

oop-

nvi-

real-
as information to the user in a timely and appropriate manner. The framework

implemented as an extension to the InterViews user interface toolkit.

In order to validate the framework, the extension was used to build a prototype c

erative software environment for robotic welding. The robotic welding software e

ronment was successful in demonstrating the utility of the framework design in a

world application.
71

 Bibliography

in

r a

g

ch-

0

in
i-

arc
on

les

es
l

Bibliography

[1] Baxter, J.D., Oldland, R.B., Bottomley, R., “The use of expert knowledge
the selection of CIG welding consumables”,Proceedings of the Australian
Joint AI Conference, pp 190-202, (1988).

[2] Bennett, K.B.,“ Representation aiding: complementary decision support fo
complex, dynamic control task,” Control Systemsvol 12 no 4 pp 19-24,
(1992).

[3] Bentley, A.E. and Marburger, S.J.,“ Arc welding penetration control using
quantitative feedback theory,” Welding Research Supplement to the Weldin
Journalvol 71 no 11 pp 397s-405s, (1992).

[4] Bergmann, N.W., Harris, D., Jarvis, D.H., Mudge, J.C., “Collaboration Te
nology Support for the Distributed Design Process”,Technical Report MTA
310, CSIRO Division of Manufacturing Technology, (1994).

[5] Blattner, M.M., Dannenberg, R.B., “Multimedia Interface Design”, ACM
Press, (1992).

[6] Borland C++, Part No: BCP1245WW21772, Borland International Inc., 10
Borland Way, Scotts Valley, CA 95066-3249, (1994).

[7] Bruck, D.M., “Experiences of object-oriented programming development
C++ and InterViews”,Proceedings of TOOLS’89 Technology of Object-Or
ented Languages and Systems, pp123-7, (1989).

[8] Calder, P.R.,Building user interfaces with lightweight objects, Ph.D. Disserta-
tion, Stanford University, (1993).

[9] Cassar, J.P. and Vanheeghe, P., “Programming Environment for robotized
welding” pp 809-814 inProceedings of the 20th International Symposium
Industrial Robots, (1989).

[10] Clarke, A.A., Smyth, M.G.G., “A cooperative computer based on the princip
of human cooperation.”,International Journal of Man Machine Studies, vol
38, pp3-22 (1993).

[11] Crawford, J.L., “The Intelligent Graphic Interface Project: operator interfac
for the year 2000”,Proceedings of the Human Factors Society 36th Annua
Meeting. Innovations for Interactions, vol.1, pp 465-9, (1992).

[12] Ferguson, P., Brennan, D.,Volume 6B: Motif Reference Manual, O’Reilly and
Associates, (1993).

[13] Fisher, G., Lemke, C., Mastaglio, T., Morch, A.I.; “The role of Critiquing in
Cooperative Problem Solving”,ACM Transactions on Information Systems,
vol 9, no 3, April 1991, pp 123-151, (1991).

[14] Gamma, E., Helm, R., Johnson, R., Vlissides, J.,Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, (1994).

[15] Goldberg, D.E.,Genetic Algorithms in Search, Optimisation and Machine
Learning, Addison-Wesley, (1989).
72

 Bibliography

e-

-
ors
,

ner-

ty

ce,

ce

ur-

the

us-

th

ed

et,

ime
[16] Guu, A.C. and Rokhlin, S.I.,“ Technique for simultaneous real-time measur
ments of weld pool surface geometry and arc force”, Welding Research Sup-
plement to the Welding Journal, vol 71 no 12, pp 473s-482s (1992.).

[17] Harbour, J.L. “Integrating HRA into decision support systems: a new fron
tier?”,Conference Record for 1992 IEEE Fifth Conference on Human Fact
and Power Plants (Cat. No.92CH3233-4), pp 467-70, IEEE, New York, NY
USA, (1992).

[18] Hemmerle J.S., Terk, M., Gursoz, E.L., Prinz, F.B., Doyle, T.E., “Next ge
ation manufacturing task planner for robotic arc welding”,ISA Transactions,
vol 31 no 2, pp 97-113, (1992).

[19] Horowitz, P., “The Art of Electronics”, second edition, Cambridge Universi
Press, (1989).

[20] ILOG Rules, ILOG SA, 2 avenue Raspail, BP 7, 94251 Gentilly Cedex, Fran
(1994).

[21] ILOG Views, ILOG SA, 2 avenue Raspail, BP 7, 94251 Gentilly Cedex, Fran
(1995).

[22] Jarvis, D.H., Seabrook, T.D., and Jarvis, J.H.,“ Decision Support Systems for
Manufacturing” , Proceedings of the 1990 Pacific Conference on Manufact
ing, (1990).

[23] Kempf, K., “Intelligent interfaces for computer integrated manufacturing”,
Proceedings of the Third International Conference. Expert Systems and
Leading Edge in Production and Operations Management, pp 269-79, (1989).

[24] Knuth, D.,The TeXbook, Addison Wesley, (1984).

[25] LabWindows,LabWindows/CVI Demonstration Guide for Windows, Part
Number 350173A-01, National Instruments, 6504 Bridge Point Parkway, A
tin, TX 78730-5039, USA, (1994).

[26] Linton, M.A., Vlissides, J.M., Calder, P.R. “Composing user interfaces wi
InterViews”,Computer, vol Feb 1989, pp 8-22 (1989).

[27] Linton, M.A, Calder, P.R., Interrante, J.A., Tang, S., Vlissedes, J.M.,Inter-
Views Reference Manual Version 3.1, The Board of Trustees of the Leland
Stanford Junior University, (1992).

[28] Madsen, O. and Holm, H.,“ Real time requirements to a CAD and sensor bas
control system for robotic multi-pass TIG welding,” IEEE International Work-
shop on Intelligent Motion Control, vol 1, pp 347-54, (1990).

[29] Matlab Professional, Part No: ML402, The Math Works Inc., 21 Eliot Stre
South Natick, MA 01760, (1994).

[30] Nann, S.R., Ray, A., and Kumara, S., “A decision support system for real-t
monitoring and control of dynamical processes”,International Journal of In-
telligent Systems,vol 6 no 7, pp 739-58, (1991).

[31] Norrish, J.,Advanced Welding Processes, Institute of Physics Publishing,
(1989).
73

 Bibliography

sk

l

m”,

rc-

for
s-

est
-
on-
[32] O’Connor, L.J., Lan, M.S., Partridge,D.R., Lee,J.M.F., “A case-based ap-
proach to automated weld-process design”,Applied Artificial Intelligence, vol
6, pp 315-30, (1992).

[33] Pree, W.,Design Patterns for Object-Oriented Software Development, Addi-
son-Wesley, (1995).

[34] Rencken, W.D., Durrant-Whyte, H.F. “A quantitative model for adaptive ta
allocation in human-computer interfaces”,IEEE Transactions on Systems,
Man and Cybernetics, vol 23 no 4, pp 1072-90, (1993).

[35] Reilly, R.,“ Real-time weld quality monitor controls GMA Welding”, Welding
Journal,vol 70 no 1, pp 37-41, (1991).

[36] Rettig, Mark,“ Cooperative Software,” Communications of the ACM, (1993).

[37] Roseman, M,Design of a real-time groupware toolkit, Master’s Dissertation,
Department of Computer Science, University of Calgary, Alberta, (1993).

[38] Rumbaugh, J., Blaha, M., Premerlaini, W., Eddy, F., Lorensen, W.,Object-ori-
ented Modeling and Design, Prentice-Hall, (1991).

[39] Scheifler, Robert W., Gettys, Jim, “The X Windows System”,ACM Transac-
tions on Graphics, vol 5 no 3, Apr 1986, pp 79-109, (1986).

[40] Schneiderman, B.,Designing the User Interface, Addison-Wesley, (1992).

[41] Schwuttke, U.M., Quan, A.G., Holder, B. “Intelligent data presentation for
real-time spacecraft monitoring”,Proceedings of the SPIE - The Internationa
Society for Optical Engineering,vol 1963, pp 80-9, (1993).

[42] Sicard, P. and Levine, M.D., “An approach to an expert robot welding syste
IEEE Transactions on Systems, Manufacturing and Cybernetics, vol 18 no 2,
pp 204-222, (1988).

[43] Spelt, P.F., Knee, H.E., Glover, C.W.,“ Hybrid artificial intelligence architec-
ture for diagnosis and decision-making in manufacturing”, Journal of Intelli-
gent Manufacturing, vol 2 no 5, pp 261-8, (1991).

[44] Tsai, M.J., Shi-Da Lin, Meng-Chiun Chen, “Mathematical model for robot a
welding off-line programming system”,International Journal of Computer In-
tegrated Manufacturing, vol 5 no 4-5, pp 300-9, (1992).

[45] Villanueva, H.E., Arena, S.N., Albertos, P., “Data filtering and presentation
decision support in power stations”,Expert System Application to Power Sy
tems IV Proceedings, pp 630-5, (1992).

[46] Waller, D.N., Foster, C.J., and Wagner, R.,“ Real-time imaging for arc weld-
ing”, International Journal of Computer Integrated Manufacturing, vol 3 no
3/4, pp 249-60, (1990).

[47] Wirfs-Brock, R., Wilkerson, B., Wiener, L.,Designing Object-Oriented Soft-
ware, Prentice Hall, (1990).

[48] Wybo, J.-L., Meunier, E., “Architecture of a decision support system for for
fire prevention and fighting”,Proceedings of the 1993 Simulationa Multicon
ference on the International Emergency Management and Engineering C
ference, pp 186-90, (1993).
74

 Bibliography

ka-
hu
[49] “Yasnac ERC Controller Communications”, 479236-17 Revision 1.0, Yas
wa Electric Corporation, 2-1, Kurosaki-shiroishi, Yahatanishi-ku, Kitakyus
806, Japan.
75

Appendix A. Framework Class Reference

tation

tion
Appendix A. Framework Class Reference

This appendix describes the classes that make up the information presen

framework.

The use of italics in the names of member functions indicates that the func

has been inherited from the parent class.
76

Appendix A. Framework Class Reference

rs;

rt)

 a

ured

dler

ach

es

.

riate

ta.

the

lers.

must

ter.

ames

iti-
NAME

DataHandler (abstract class, derived from IOHandler)

SYNOPSIS

Link data streams representing measured parameters to DisplayHandle

manage ports; pass data streams to DisplayHandlers.

DESCRIPTION

A DataHandler is associated with a file descriptor (typically an external po

through which it will receive and manage data streams. A data stream is

series of values arriving over a period of time representing a single meas

quantity. The DataHandler can link a single data stream to a Display Han

and may also link a filter to a data stream. When a block of data arrives,

DataHandler is notified by a Dispatcher (InterViews class). DataHandler

reads the block of data, which represents the latest acquired values in e

data stream from the port and interprets the data block as separate valu

according to the information stored in a subclass-defined data format file

DataHandler extracts the value in each stream and writes it to the approp

DisplayHandler.

PUBLIC MEMBER FUNCTIONS

DataHandler(char* portname)

Accepts the name of the port from which the DataHandler will receive da

virtual int inputReady(int port)

Notification that data is ready on the port. Reads and interprets data from

port, applies any Filters, then passes data streams to linked DisplayHand

Subclasses must redefine this function.

virtual void timerExpired(long sec, long usec)

Timer expiry notification. Resets timer and gets more data. Subclasses

define this function.

void linkStream(const char* stream1, const char* stream2,

DisplayHandler* disphdlr, Filter* filter = nil)

Links one or two data streams to a DisplayHandler and optionally to a fil

The data streams are represented by string names, which correspond to n

listed in a device-specific format file. The filter is passed as a pointer and in

alised to “nil” to make it an optional parameter.
77

Appendix A. Framework Class Reference

taH-

in

tion.
virtual void startRetrieve(char* logfilename)

Starts retrieving the data from a data acquisition device attached to the Da

andler’s port. If a logfilename is specified, the incoming data will be stored

it, in unfiltered and unprocessed form. Subclasses must define this func

virtual void stopRetrieve(char* logfilename)

Stops retrieving data from the port.

void startReplay(char* logfilename)

void stopReplay(char* logfilename)

Start and stop a logged data replay session.
78

Appendix A. Framework Class Reference

the

peci-

s,

not

.

NAME

Filter (abstract class)

SYNOPSIS

Removes or modifies floating point values from a data stream that match

given specification.

DESCRIPTION

Filter checks whether each received value matches an undefined filter s

fication. The returned value depends on whether or not the input value

matches the filter specification.

PUBLIC MEMBER FUNCTIONS

virtual void applyFilter(float* value)

Compares the input value with the filter removal specification. If it matche

filter returns an acceptable substitute value (which may be zero). If it does

match, filter returns the input value. Subclasses must define this function
79

Appendix A. Framework Class Reference

epre-

s in

lies a

d a

 it
NAME

DisplayHandler (concrete class)

SYNOPSIS

Link data streams to Processors and Displayers; send data values to

Displayers via Processors.

DESCRIPTION

DisplayHandler maintains associations between each data stream that r

sents a parameter with one or more Displayers that will display the value

the data stream. DisplayHandler receives a data stream and possibly app

Processor before writing the stream to the appropriate Displayers.

PUBLIC MEMBER FUNCTIONS

linkStream(Displayer* displayer, Processor* processor)

Create a link between this DisplayHandler’s data stream (one or two) an

Displayer; optionally link a Processor to the data stream.

void update(float* value)

void update(float* value1, float* value2)

Notify the DisplayHandler to send the given value(s) to all the Displayers

maintains.
80

Appendix A. Framework Class Reference

m).

rms

oint

e, or

sses
NAME

Processor (abstract class)

SYNOPSIS

Combine and/or process a single value or a series of values (data strea

DESCRIPTION

Processor takes either one or two floating point values as inputs and perfo

a subclass-defined operation on them, then returns the resulting floating p

value. Subclasses of Processor may be defined to accept only one valu

only two values, or either one or two values as input.

PUBLIC MEMBER FUNCTIONS

virtual float Process(float* value)

virtual float Process(float* value1, float* value2)

Perform a calculation on the input value(s) and return the result. Subcla

must define this function.
81

Appendix A. Framework Class Reference

ta is

ent.

this

e

bars

this
NAME

Displayer (abstract class, derived from MonoGlyph)

SYNOPSIS

Display a series of values from a data stream.

DESCRIPTION

Displayer is an abstract class that defines the interface through which da

passed to it; it does not define how the data is displayed.

PUBLIC MEMBER FUNCTIONS

Displayer()

Uses a Patch (InterViews class) to create a basic redrawable display elem

virtual void draw(Canvas* canvas, const Allocation alloc)

Draws the Displayer and its contents on the user screen.

virtual void update(float* value)

Updates the displayed value with a new value. Subclasses must define

function so that only the dynamic parts of the Displayer’s appearance ar

changed. For example, a histogram’s axis labels may be static while the

that represent the values are dynamic.

virtual void clear()

Clears all displayed values from the Displayer. Subclasses must define

function.
82

Appendix B. Panel Class Reference

ative

her

class

tes
Appendix B. Panel Class Reference

This appendix describes the classes used to construct the Panel cooper

software environment, based on the information presentation framework

design. ClipperFilter and Multiplier were implemented as C functions rat

than classes for building the Panel. However, they are described here in

form to indicate the effort required to implement them as classes.

In this appendix, the use of italics in the names of member functions indica

that the function has been inherited from the parent class.
83

Appendix B. Panel Class Reference

 the

o

ch

inter-

-

ch

he

pear

dler

the

dlers.

e

g

he

ta

ted in

file

ch
NAME

WeldMonHandler (concrete class, derived from DataHandler)

SYNOPSIS

Link floating point data streams to Filters and DisplayHandlers; manage

retrieval of data from Welding Data Monitor (WDM); pass data streams t

linked Filters and DisplayHandlers.

DESCRIPTION

A WeldMonHandler is associated with a file descriptor (port) through whi

it will receive and manage data streams. WeldMonHandler manages the

action with the WDM that acquires welding data. To start retrieval, Weld

MonHandler polls the WDM for data until receiving the order to stop. As ea

block of data arrives, WeldMonHandler extracts the values, then writes t

values to the appropriate DisplayHandler.

The incoming data can be stored in unprocessed form and replayed to ap

as though it is being received live.

PUBLIC MEMBER FUNCTIONS

WeldMonHandler(char* portname)

The constructor stores the name of the port through which WeldMonHan

will retrieve data from the Welding Data Monitor.

virtual int inputReady(int port)

Notification that data is ready on the port. Reads and interprets data from

port, applies any Filters, then passes data streams to linked DisplayHan

virtual void timerExpired(long sec, long usec)

Timer expiry notification. Resets timer and gets more data, either from th

WDM or from the log file. Getting more data from the WDM involves sendin

it the “receive” command.

void linkStream(const char* stream1, const char* stream2,

DisplayHandler* disphdlr, Filter* filter = nil)

Link one or two data streams to a DisplayHandler via optional filter(s). T

Filter parameter is initialised to “nil” to make it an optional parameter. Da

streams are represented by string names, which correspond to names lis

a WDM data format template file, as shown in Figure B-1. The template

describes which column of the WDM data file contains each named data

stream, as shown in Figure B-2. The data file is an ASCII text file, in whi
84

Appendix B. Panel Class Reference

values

-

ing

the

e

the
each column represents a data stream, and each line represents a set of

measured simultaneously by the WDM.

Figure B-1 Sample WDM data format file

Figure B-2 Sample WDM data file

Note that in the InterViews toolkit extension implementation of the frame

work, the filter is defined as a C function, so it is passed as a C function

pointer.

void startRetrieve(char* logfilename)

Opens the port to which the Welding Data Monitor is attached. Starts poll

the Welding Data Monitor for data, using a timing loop. Reads data from

port as it arrives, when notified by the Dispatcher (InterViews class that

performs interrupt driven data detection). If a logfilename is specified, th

incoming data will be stored in it.

void stopRetrieve(char* logfilename)

Stops retrieving data from the port by stopping the timing loop and closing

port.

VOLTS 0
AMPS 1

8.3 234 115 3091
11.6 362 113 4224
11.5 362 113 4179
11.8 364 115 4328
12.2 366 113 4492
12.4 366 113 4554
12.6 366 113 4642
12.7 366 113 4681
12.9 366 113 4733
13.0 364 113 4783
85

Appendix B. Panel Class Reference

the
void startReplay(char* logfilename)

Opens the logfile and starts to replay the data by reading and interpreting

file in the same way as for the port.

void stopReplay(char* logfilename)

Stops replay of data and closes the logfile.
86

Appendix B. Panel Class Reference

old.

old.

ns
NAME

ClipperFilter (concrete class, derived from Filter)

SYNOPSIS

Remove floating point values from a data stream that fall below the thresh

DESCRIPTION

ClipperFilter checks whether each received value matches its given thresh

A value is returned according to whether or not the value was below the

threshold.

PUBLIC MEMBER FUNCTIONS

void ClipperFilter(float threshold)

Accepts a threshold value.

void applyFilter(float* value)

Compares the input value with the filter threshold. If it matches, filter retur

the threshold value. If it falls above, filter returns the input value.
87

Appendix B. Panel Class Reference
NAME

Multiplier (concrete class, derived from Processor)

SYNOPSIS

Multiply the floating point values from two data streams.

DESCRIPTION

Multiplier takes two floating point values as inputs and multiplies them

together, then returns the resulting floating point value.

PUBLIC MEMBER FUNCTIONS

float Process(float* value1, float* value2)

Multiplies the input values and returns the result.
88

Appendix B. Panel Class Reference

uge.

y in

is

aces

f

NAME

Readout (concrete class, derived from Displayer)

SYNOPSIS

Display a series of floating point data values in the form of a numeric ga

DESCRIPTION

Readout accepts one value at a time and displays each one immediatel

numeric format, to a specified number of decimal places. The precision

specified in the Readout’s constructor function.

PUBLIC MEMBER FUNCTIONS

Readout(int precision, WidgetKit* widget)

Creates itself using widget components. Stores the number of decimal pl

to which it must display incoming data values.

virtual void draw(Canvas* canvas, const Allocation alloc)

Draws the Readout and its contents on the user screen.

void update(float* value)

Replaces the current value with the new value to the specified number o

decimal places. Redraws itself using the patch.

void clear()

Resets the displayed value to zero.
89

Appendix B. Panel Class Reference

r

 the

ff.

tor

t

imit,

lls

.

NAME

Alarm (concrete class, derived from Displayer)

SYNOPSIS

Light up a visual alarm indicator whenever a floating point value is highe

than a user-specified limit.

DESCRIPTION

Alarm accepts one value at a time and checks whether a value is higher

current upper limit. If so, its indicator lights up; if not its indicator stays o

The indicator light takes the form of a toggle button that bears a light indica

with two states: dark means “Ok” while light means “Alarm”. The limit is se

by the user typing a numerical value into the input field.

PUBLIC MEMBER FUNCTIONS

Alarm(LayoutKit* layout, WidgetKit* widget)

Composes itself from layout and widget components.

virtual void draw(Canvas* canvas, const Allocation alloc)

Draws the Alarm and its contents on the user screen.

void update(float* value)

Compares the value to the current upper limit; if the value exceeds the l

the indicator region lights up (becomes a light tone/colour). If the value fa

below the limit, the indicator light goes out (becomes a dark tone/colour)

void reset()

Resets the indicator light to “Ok” (dark).

void clear()

Resets the current limit to zero.
90

Appendix B. Panel Class Reference

m of

por-

r

.

the

ight

.

the

am

the

ctor

axis

ted

 a

yed

en

bar

tself
NAME

Histogram (concrete class, derived from Displayer)

SYNOPSIS

Display a floating point data stream in the form of a dynamic vertical bar

histogram.

DESCRIPTION

A Histogram accepts one value at a time and displays each one in the for

a vertical bar on the histogram. The size of the bar will represent the pro

tion of that value to the current scale range. The horizontal axis of the ba

represents elapsed time, relative to the frequency of the arrival of values

When the horizontal axis has been filled with bars, the Histogram shifts

bars to the left to give the appearance of the viewscreen “panning” to the r

along the time axis, so that the most recent values are always displayed

The height of the histogram (i.e. length of the vertical axis) is specified in

constructor function. The user can adjust the vertical scale of the histogr

(i.e. the scale relating to the size of the values) at any time by clicking on

up or down arrow buttons. The scale can be adjusted up or down by a fa

of ten. The histogram can be cleared of all values at any time.

PUBLIC MEMBER FUNCTIONS

Histogram(int height, int width, LayoutKit* layout, WidgetKit* widget)

Composes itself from layout and widget components and places both its

labels and viewscreen inside separate patches to allow them to be upda

dynamically. Height specifies the maximum length for a bar representing

value. Width specifies the maximum number of values that can be displa

along the horizontal (time) axis, based on a fixed bar width.

virtual void draw(Canvas* canvas, const Allocation alloc)

Draws the Histogram and its contents on the user screen.

void update(float* value)

Adds a new bar to the right hand end of the horizontal axis. If the viewscre

is full along the time axis, shifts all bars once to the left so that the oldest

disappears before adding the new bar on the right hand end. Redraws i

using the viewscreen patch.
91

Appendix B. Panel Class Reference
void clear()

Removes all bars from its screen.
92

	A USER INTERFACE TOOLKIT EXTENSION FOR COOPERATIVE PROBLEM SOLVING
	Table of Contents
	Chapter 1. Introduction 1
	Chapter 2. Related Work 6
	Chapter 3. Cooperative Problem Solving Framework 17
	Chapter 4. Cooperative Software Application 30
	Chapter 5. Design and Implementation 40
	Chapter 6. Future Work and Conclusions 64
	Bibliography 72

	List of Figures
	List of Tables
	Glossary
	Abstract
	Declaration
	Acknowledgements
	Chapter 1. Introduction
	1.1 Objectives
	1. to define effective support for low�level activities in reactive environments;
	2. to describe efficient mechanisms for implementors of CPS systems to support these activities.

	1.2 Methodology
	1. identify low�level activities that need to be supported in CPS systems for reactive environments;
	2. devise a generic framework which directly supports the implementation of these activities in C...
	1. designing the framework and implementing the toolkit extension;
	2. evaluating the usefulness of the framework, by using the toolkit extension to develop a protot...
	Figure 1�1 Typical setup procedure for a complex manufacturing process

	1. a planning phase, in which initial process parameters are selected and tried;
	2. a replanning phase, in which process parameters are modified because the results of the trial ...

	1.3 Thesis organisation

	Chapter 2. Related Work
	2.1 Cooperative problem solving
	2.1.1 A new taxonomy
	Table 2�1 Taxonomy of CPS techniques

	Technique
	Proponents
	Description
	2.1.2 Visualisation
	2.1.3 Multiple views
	2.1.4 Filtering
	2.1.5 Highlighting
	2.1.6 Summation
	2.1.7 Advising
	2.1.8 Problem structuring
	2.2 Toolkits
	2.2.1 Toolkit extensions
	2.2.2 Why choose InterViews?
	Figure 2�1 InterViews FileChooser

	2.2.3 Existing toolkits

	2.3 Frameworks
	2.3.1 Framework example
	2.3.2 Existing frameworks

	2.4 Summary

	Chapter 3. Cooperative Problem Solving Framework
	3.1 Cooperative software requirements
	Table 3�1 Summary of requirements for cooperative software

	Requirements
	Benefits
	A Graphical interface
	Data retrieval and presentation
	Information highlighting
	Information storage
	Integration of tools
	Abstracted functionality
	A
	Repository of cases
	Extensibility
	3.2 Information presentation requirements
	Table 3�2 How cooperative software requirements are to be met

	Requirements
	Met by
	3.3 Information presentation framework
	Figure 3�1 Information presentation framework design
	3.3.1 Framework components
	DataHandler (abstract class, derived from IOHandler)
	Filter (abstract class)
	DisplayHandler (concrete class)
	Processor (abstract class)
	Displayer (abstract class, derived from MonoGlyph)

	3.3.2 Examples of derived components
	3.3.3 Class hierarchy
	Figure 3�2 Information presentation class hierarchy

	3.3.4 Sample configuration
	Figure 3�3 Composition of a sample information presentation subsystem

	3.3.5 Cooperative problem solving techniques
	Visualisation
	Filtering
	Summation
	Highlighting

	3.4 Summary

	Chapter 4. Cooperative Software Application
	4.1 Small batch robotic welding
	4.1.1 Welding process parameters
	1. primary manipulable - directly adjustable, for example: arc current, arc gap size, torch speed;
	2. secondary manipulable - indirectly adjustable by employing empirically known relationships, fo...
	3. fixed - parameters which cannot be adjusted during program tuning, for example: material, join...

	4.1.2 Welding robot setup

	4.2 Relevant work in robotic welding
	4.2.1 Autonomous approaches to setup
	4.2.2 Support approaches to setup
	4.2.3 Cooperative approaches to setup

	4.3 The existing welding environment
	Figure 4�1 Overview of the robotic welding environment
	4.3.1 Yasnac ERC robot controller interface
	Figure 4�2 Yasnac ERC robot controller panel

	4.3.2 Welding Data Monitor interface
	Figure 4�3 Welding Data Monitor (WDM)

	4.3.3 A typical scenario - existing environment

	4.4 Requirements for a robotic welding environment
	4.4.1 Existing functions
	Robot programming
	Control and status

	4.4.2 New functions
	A Graphical interface
	Data retrieval and presentation
	Information highlighting
	Information storage
	Integration of tools
	Abstracted functionality
	Repository of cases
	Extensibility

	4.5 Summary

	Chapter 5. Design and Implementation
	5.1 The InterViews toolkit extension
	5.1.1 Framework classes
	5.1.2 Derived classes
	WeldMonHandler (concrete class, derived from DataHandler)
	Figure 5�1 Sample WDM data format file
	Figure 5�2 Sample WDM data file

	Readout (concrete class, derived from Displayer)
	Figure 5�3 Readout

	Histogram (concrete class derived from Displayer)
	Figure 5�4 Histogram

	Alarm (concrete class is derived from Displayer)
	Figure 5�5 Alarm

	5.1.3 C functions
	ClippingFilter
	Multiply

	5.1.4 Sample linkage of toolkit components
	Figure 5�6 Sample code for linking toolkit components

	5.1.5 Facilities of the toolkit extension

	5.2 The prototype cooperative software environment
	Figure 5�7 Overview of Panel within robotic welding environment
	1. a static cooperative software environment, supported by InterViews and OS;
	2. a dynamic cooperative software environment, supported by InterViews, OS, and framework.
	Figure 5�8 The Panel subsystems

	5.2.1 InterfaceManager subsystem
	Figure 5�9 Sample glyph hierarchy for InterfaceManager subsystem
	Figure 5�10 The Panel cooperative software environment

	5.2.2 RobotManager subsystem
	5.2.3 DataManager subsystem
	Figure 5�11 Sample object-instance graph for DataManager subsystem

	5.2.4 Panel functionality
	Table 5�1 Interface comparison: Yasnac ERC vs Panel, by no. of steps

	Function
	Yasnac controller
	No. of Steps
	The Panel
	No. of Steps
	5.2.5 A typical scenario - the new environment
	5.2.6 Demonstration
	1. The RobotManager subsystem was used to transfer a file from the computer to the controller and...
	2. The DataManager subsystem was tested with the WDM to ensure that the Panel could successfully ...

	5.3 Evaluation of the framework
	5.3.1 Framework design
	Design of a subsystem
	Generic design
	Expansion of the design

	5.3.2 Framework implementation effort

	5.4 Evaluation of the toolkit extension
	5.4.1 Cooperative software techniques
	Visualisation
	Filtering
	Summation
	Highlighting

	5.4.2 Toolkit extension application effort

	5.5 Evaluation of the cooperative software environment
	5.5.1 Evaluation against requirements
	Robot programming and management
	Robot control and status
	Graphical interface
	Data retrieval and presentation
	Highlighting
	Data storage
	Integration of tools
	Abstracted functionality
	Repository of cases
	Extensibility

	5.6 Summary

	Chapter 6. Future Work and Conclusions
	6.1 Enhancements
	6.1.1 Object-oriented implementation
	6.1.2 Advanced program debugging
	6.1.3 Knowledge base of cases
	6.1.4 Parameter limit alerting
	6.1.5 Multimedia data presentation
	6.1.6 User–configured information presentation

	6.2 Future Work
	6.2.1 High-level cooperative problem solving techniques
	6.2.2 Other testbeds
	6.2.3 Study of problem solving

	6.3 Conclusion
	1. definition of a cooperative problem solving taxonomy that helps identify:
	2. definition of a framework that supports these techniques to provide a reusable design for the ...
	3. demonstration of a toolkit extension to InterViews that implements the framework design and is...
	6.3.1 Cooperative problem solving taxonomy
	6.3.2 Information presentation framework
	6.3.3 Toolkit extension
	6.3.4 Summary

	Bibliography
	[1] Baxter, J.D., Oldland, R.B., Bottomley, R., “The use of expert knowledge in the selection of ...
	[2] Bennett, K.B., “Representation aiding: complementary decision support for a complex, dynamic ...
	[3] Bentley, A.E. and Marburger, S.J., “Arc welding penetration control using quantitative feedba...
	[4] Bergmann, N.W., Harris, D., Jarvis, D.H., Mudge, J.C., “Collaboration Technology Support for ...
	[5] Blattner, M.M., Dannenberg, R.B., “Multimedia Interface Design”, ACM Press, (1992).
	[6] Borland C++, Part No: BCP1245WW21772, Borland International Inc., 100 Borland Way, Scotts Val...
	[7] Bruck, D.M., “Experiences of object-oriented programming development in C++ and InterViews”, ...
	[8] Calder, P.R., Building user interfaces with lightweight objects, Ph.D. Dissertation, Stanford...
	[9] Cassar, J.P. and Vanheeghe, P., “Programming Environment for robotized arc welding” pp 809-81...
	[10] Clarke, A.A., Smyth, M.G.G., “A cooperative computer based on the principles of human cooper...
	[11] Crawford, J.L., “The Intelligent Graphic Interface Project: operator interfaces for the year...
	[12] Ferguson, P., Brennan, D., Volume 6B: Motif Reference Manual, O’Reilly and Associates, (1993).
	[13] Fisher, G., Lemke, C., Mastaglio, T., Morch, A.I.; “The role of Critiquing in Cooperative Pr...
	[14] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable Objec...
	[15] Goldberg, D.E., Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-Wes...
	[16] Guu, A.C. and Rokhlin, S.I., “Technique for simultaneous real-time measurements of weld pool...
	[17] Harbour, J.L. “Integrating HRA into decision support systems: a new frontier?”, Conference R...
	[18] Hemmerle J.S., Terk, M., Gursoz, E.L., Prinz, F.B., Doyle, T.E., “Next generation manufactur...
	[19] Horowitz, P., “The Art of Electronics”, second edition, Cambridge University Press, (1989).
	[20] ILOG Rules, ILOG SA, 2 avenue Raspail, BP 7, 94251 Gentilly Cedex, France, (1994).
	[21] ILOG Views, ILOG SA, 2 avenue Raspail, BP 7, 94251 Gentilly Cedex, France (1995).
	[22] Jarvis, D.H., Seabrook, T.D., and Jarvis, J.H., “Decision Support Systems for Manufacturing”...
	[23] Kempf, K., “Intelligent interfaces for computer integrated manufacturing”, Proceedings of th...
	[24] Knuth, D., The TeXbook, Addison Wesley, (1984).
	[25] LabWindows, LabWindows/CVI Demonstration Guide for Windows, Part Number 350173A-01, National...
	[26] Linton, M.A., Vlissides, J.M., Calder, P.R. “Composing user interfaces with InterViews”, Com...
	[27] Linton, M.A, Calder, P.R., Interrante, J.A., Tang, S., Vlissedes, J.M., InterViews Reference...
	[28] Madsen, O. and Holm, H., “Real time requirements to a CAD and sensor based control system fo...
	[29] Matlab Professional, Part No: ML402, The Math Works Inc., 21 Eliot Street, South Natick, MA ...
	[30] Nann, S.R., Ray, A., and Kumara, S., “A decision support system for real-time monitoring and...
	[31] Norrish, J., Advanced Welding Processes, Institute of Physics Publishing, (1989).
	[32] O’Connor, L.J., Lan, M.S., Partridge,D.R., Lee,J.M.F., “A case-based approach to automated w...
	[33] Pree, W., Design Patterns for Object-Oriented Software Development, Addison-Wesley, (1995).
	[34] Rencken, W.D., Durrant-Whyte, H.F. “A quantitative model for adaptive task allocation in hum...
	[35] Reilly, R., “Real-time weld quality monitor controls GMA Welding”, Welding Journal, vol 70 n...
	[36] Rettig, Mark, “Cooperative Software,” Communications of the ACM, (1993).
	[37] Roseman, M, Design of a real-time groupware toolkit, Master’s Dissertation, Department of Co...
	[38] Rumbaugh, J., Blaha, M., Premerlaini, W., Eddy, F., Lorensen, W., Object-oriented Modeling a...
	[39] Scheifler, Robert W., Gettys, Jim, “The X Windows System”, ACM Transactions on Graphics, vol...
	[40] Schneiderman, B., Designing the User Interface, Addison-Wesley, (1992).
	[41] Schwuttke, U.M., Quan, A.G., Holder, B. “Intelligent data presentation for real-time spacecr...
	[42] Sicard, P. and Levine, M.D., “An approach to an expert robot welding system”, IEEE Transacti...
	[43] Spelt, P.F., Knee, H.E., Glover, C.W., “Hybrid artificial intelligence architecture for diag...
	[44] Tsai, M.J., Shi-Da Lin, Meng-Chiun Chen, “Mathematical model for robot arc- welding off-line...
	[45] Villanueva, H.E., Arena, S.N., Albertos, P., “Data filtering and presentation for decision s...
	[46] Waller, D.N., Foster, C.J., and Wagner, R., “Real-time imaging for arc welding”, Internation...
	[47] Wirfs-Brock, R., Wilkerson, B., Wiener, L., Designing Object-Oriented Software, Prentice Hal...
	[48] Wybo, J.-L., Meunier, E., “Architecture of a decision support system for forest fire prevent...
	[49] “Yasnac ERC Controller Communications”, 479236-17 Revision 1.0, Yaskawa Electric Corporation...

	Appendix A. Framework Class Reference
	NAME
	DataHandler (abstract class, derived from IOHandler)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	DataHandler(char* portname)
	virtual int inputReady(int port)
	virtual void timerExpired(long sec, long usec)
	void linkStream (const char* stream1, const char* stream2,
	DisplayHandler* disphdlr, Filter* filter = nil)
	virtual void startRetrieve(char* logfilename)
	virtual void stopRetrieve(char* logfilename)
	void startReplay(char* logfilename)
	void stopReplay(char* logfilename)

	NAME
	Filter (abstract class)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	virtual void applyFilter(float* value)

	NAME
	DisplayHandler (concrete class)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	linkStream(Displayer* displayer, Processor* processor)
	void update(float* value)
	void update(float* value1, float* value2)

	NAME
	Processor (abstract class)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	virtual float Process(float* value)
	virtual float Process(float* value1, float* value2)

	NAME
	Displayer (abstract class, derived from MonoGlyph)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	Displayer()
	virtual void draw(Canvas* canvas, const Allocation alloc)
	virtual void update(float* value)
	virtual void clear()

	Appendix B. Panel Class Reference
	NAME
	WeldMonHandler (concrete class, derived from DataHandler)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	WeldMonHandler(char* portname)
	virtual int inputReady(int port)
	virtual void timerExpired(long sec, long usec)
	void linkStream (const char* stream1, const char* stream2,
	DisplayHandler* disphdlr, Filter* filter = nil)
	Figure B-1 Sample WDM data format file
	Figure B-2 Sample WDM data file

	void startRetrieve(char* logfilename)
	void stopRetrieve(char* logfilename)
	void startReplay(char* logfilename)
	void stopReplay(char* logfilename)

	NAME
	ClipperFilter (concrete class, derived from Filter)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	void ClipperFilter(float threshold)
	void applyFilter(float* value)

	NAME
	Multiplier (concrete class, derived from Processor)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	float Process(float* value1, float* value2)

	NAME
	Readout (concrete class, derived from Displayer)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	Readout(int precision, WidgetKit* widget)
	virtual void draw(Canvas* canvas, const Allocation alloc)
	void update(float* value)
	void clear()

	NAME
	Alarm (concrete class, derived from Displayer)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	Alarm(LayoutKit* layout, WidgetKit* widget)
	virtual void draw(Canvas* canvas, const Allocation alloc)
	void update(float* value)
	void reset()
	void clear()

	NAME
	Histogram (concrete class, derived from Displayer)
	SYNOPSIS
	DESCRIPTION
	PUBLIC MEMBER FUNCTIONS
	Histogram(int height, int width, LayoutKit* layout, WidgetKit* widget)
	virtual void draw(Canvas* canvas, const Allocation alloc)
	void update(float* value)
	void clear()

